builderall

Oxidative Stress, it's

triggers in causing runaway Inflammation and its role in MS (Multiple Sclerosis) and other Neuropathic diseases




Excerpts from a publication by, Valentina Pegoretti,1 Kathryn A. Swanson,2 John R. Bethea,2 Lesley Probert,3 Ulrich L. M. Eisel,1 and Roman Fischer 4 Academic Editor: Víctor M. Mendoza-Núñez et al.



Molecular Hydrogen and its ability to rapidly cross the blood brain or any membrane barrier, has been proven to be a very powerful, non toxic, antioxidant and anti-inflammatory agent, making it and excellent choice to combat and reverse the effects of OS(oxidative stress), ROS (reactive oxygen species), and INFLAMMATION (normally the bodies way of protecting us but in its chronic format it is very harmful) in Neuropathic diseases.


WHAT IS MS AND WHICH METABOLIC PROCESSES TRIGGERS AND AGGRAVATES IT?





CNS (Central nervous system) inflammation is a major driver of MS pathology. Differential immune responses, including the adaptive and the innate immune system, are observed at various stages of MS and drive disease development and progression. Next to these immune-mediated mechanisms, other mediators contribute to MS pathology. These include immune-independent cell death (Apoptosis) of oligodendrocytes (Oligodendrocytes are the myelinating, or protective cells structures of the central nervous system) and neurons as well as oxidative stress-induced tissue damage. In particular, the complex influence of oxidative stress on inflammation and vice versa makes therapeutic interference complex.


Multiple sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system (CNS) that is characterized by chronic inflammation, demyelination, due to cell death and axon and neuronal loss. Depending on the location of the demyelinating lesions, MS patients can develop almost any neurological sign or symptom, including motor, sensory, and cognitive impairment [1]. The most common symptoms are numbness, muscle spasms, ataxia, walking difficulties, bladder or visual problems, fatigue, pain, depression, and MS-related dementia [1]. One of the most frequent nonmotor MS-associated symptoms is chronic neuropathic pain (CNP), a long-lasting chronic pain that affects approx. 60% of MS patients and dramatically reduces their quality of life.


A growing amount of data suggest that oxidative injury and subsequent mitochondrial damage play a pathogenic role for neurodegeneration [13]. MS is thought to be a primarily inflammatory disease, in which demyelination and tissue injury are driven by immune-mediated mechanisms throughout all different stages and in all different courses [14], other data indicate that MS is a primary neurodegenerative disease, which is modified and amplified by the inflammatory process [15]. Indeed, oligodendrocyte apoptosis in MS lesions and tissue damage can occur independently of lymphocytes or peripheral macrophages [16], indicating that non immune mediated mechanisms contribute to MS pathology.



WHY CONSIDER HYDROGEN AS AN ADJUNCT, LONG TERM TREATMENT FOR DEGENERATIVE NEUROPATHIC DISEASES


Please refer to these previously published articles on the effects of Hydrogen on various aspects of our health

https://kyksa.com/for-the-sceptical-amongst-us-the-logic-of-drinking-molecular-hydrogen-rich-water-

https://kyksa.com/does-drinking-h-rich-water-improve-brain-health-

https://kyksa.com/why-chosse-molecular-hydrogen



Let's start off by listing what is by now well established medical and scientific fact;



References;


  1. A. Compston and A. Coles, ?Multiple sclerosis,? The Lancet, vol. 372, no. 9648, pp. 1502?1517, 2008.View at: Publisher Site | Google Scholar
  2. K. L. Murphy, J. R. Bethea, and R. Fischer, Multiple Sclerosis: Perspectives in Treatment and Pathogenesis: Neuropathic Pain in Multiple Sclerosis?Current Therapeutic Intervention and Future Treatment Perspectives, Codon publicationshttps://exonpublications.com/index.php/exon/article/view/153, Brisbane (AU), 2017.
  3. J. Drulovic, V. Basic-Kes, S. Grgic et al., ?The Prevalence of Pain in Adults with Multiple Sclerosis: A Multicenter Cross-Sectional Survey,? Pain medicine, vol. 16, no. 8, pp. 1597?1602, 2015.View at: Publisher Site | Google Scholar
  4. N. Khan and M. T. Smith, ?Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models,? Inflammopharmacology, vol. 22, no. 1, pp. 1?22, 2014.View at: Publisher Site | Google Scholar
  5. P. Browne, D. Chandraratna, C. Angood et al., ?Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity,? Neurology, vol. 83, no. 11, pp. 1022?1024, 2014.View at: Publisher Site | Google Scholar
  6. A. D. Sadovnick and P. A. Baird, ?The familial nature of multiple sclerosis: age-corrected empiric recurrence risks for children and siblings of patients,? Neurology, vol. 38, no. 6, pp. 990-991, 1988.View at: Publisher Site | Google Scholar
  7. P.-A. Gourraud, H. F. Harbo, S. L. Hauser, and S. E. Baranzini, ?The genetics of multiple sclerosis: an up-to-date review,? Immunological Reviews, vol. 248, no. 1, pp. 87?103, 2012.View at: Publisher Site | Google Scholar
  8. M. Koch, E. Kingwell, P. Rieckmann, and H. Tremlett, ?The natural history of primary progressive multiple sclerosis,? Neurology, vol. 73, no. 23, pp. 1996?2002, 2009.View at: Publisher Site | Google Scholar
  9. A. B. O'Connor, S. R. Schwid, D. N. Herrmann et al., ?Pain associated with multiple sclerosis: systematic review and proposed classification,? Pain, vol. 137, no. 1, pp. 96?111, 2008.View at: Publisher Site | Google Scholar
  10. H. Lassmann, ?Pathogenic mechanisms associated with different clinical courses of multiple sclerosis,? Frontiers in Immunology, vol. 9, p. 3116, 2018.View at: Google Scholar
  11. R. Li, K. R. Patterson, and A. Bar-Or, ?Reassessing B cell contributions in multiple sclerosis,? Nature Immunology, vol. 19, no. 7, pp. 696?707, 2018.View at: Publisher Site | Google Scholar
  12. H. L. Weiner, ?A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis,? Journal of neurology, vol. 255, Supplement 1, pp. 3?11, 2008.View at: Publisher Site | Google Scholar
  13. A. Kutzelnigg and H. Lassmann, ?Pathology of multiple sclerosis and related inflammatory demyelinating diseases,? Handbook of Clinical Neurology, vol. 122, pp. 15?58, 2014.View at: Publisher Site | Google Scholar
  14. R. Hohlfeld, K. Dornmair, E. Meinl, and H. Wekerle, ?The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets,? The Lancet Neurology, vol. 15, no. 2, pp. 198?209, 2016.View at: Publisher Site | Google Scholar
  15. B. D. Trapp and K.-A. Nave, ?Multiple sclerosis: an immune or neurodegenerative disorder?? Annual Review of Neuroscience, vol. 31, no. 1, pp. 247?269, 2008.View at: Publisher Site | Google Scholar
  16. A. P. D. Henderson, M. H. Barnett, J. D. E. Parratt, and J. W. Prineas, ?Multiple sclerosis: distribution of inflammatory cells in newly forming lesions,? Annals of Neurology, vol. 66, no. 6, pp. 739?753, 2009.View at: Publisher Site | Google Scholar
  17. J. Scholz and C. J. Woolf, ?The neuropathic pain triad: neurons, immune cells and glia,? Nature Neuroscience, vol. 10, no. 11, pp. 1361?1368, 2007.View at: Publisher Site | Google Scholar
  18. S. S. Duffy, C. J. Perera, P. G. S. Makker, J. G. Lees, P. Carrive, and G. Moalem-Taylor, ?Peripheral and Central Changes and Pain Behaviors in an Animal Model of Multiple Sclerosis,? Frontiers in Immunology, vol. 7, p. 369, 2016.View at: Publisher Site | Google Scholar
  19. K. C. Thorburn, J. W. Paylor, C. A. Webber, I. R. Winship, and B. J. Kerr, ?Facial hypersensitivity and trigeminal pathology in mice with experimental autoimmune encephalomyelitis,? Pain, vol. 157, no. 3, pp. 627?642, 2016.View at: Publisher Site | Google Scholar
  20. M. S. Yousuf, M.-C. Noh, T. N. Friedman et al., ?Sensoryneurons of the root hyperexcitable in a T-Cell-Mediated MOG-EAEmodel of Sclerosis,? eNeuro, vol. 6, no. 2, pp. ENEURO.0024?ENEU19.2019, 2019.View at: Publisher Site | Google Scholar
  21. J. M. E. Jende, G. H. Hauck, R. Diem et al., ?Peripheral nerve involvement in multiple sclerosis: Demonstration by magnetic resonance neurography,? Annals of Neurology, vol. 82, no. 5, pp. 676?685, 2017.View at: Publisher Site | Google Scholar
  22. C. Baecher-Allan, B. J. Kaskow, and H. L. Weiner, ?Multiple Sclerosis: Mechanisms and Immunotherapy,? Neuron, vol. 97, no. 4, pp. 742?768, 2018.View at: Publisher Site | Google Scholar
  23. The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2, ?Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis,? Nature, vol. 476, no. 7359, pp. 214?219, 2011.View at: Publisher Site | Google Scholar
  24. H. Lassmann, W. Brück, and C. F. Lucchinetti, ?The immunopathology of multiple sclerosis: an overview,? Brain pathology, vol. 17, no. 2, pp. 210?218, 2007.View at: Publisher Site | Google Scholar
  25. J. Machado-Santos, E. Saji, A. R. Tröscher et al., ?The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells,? Brain: A Journal of Neurology, vol. 141, no. 7, pp. 2066?2082, 2018.View at: Publisher Site | Google Scholar
  26. U. Traugott, E. Reinherz, and C. Raine, ?Multiple sclerosis: distribution of T cell subsets within active chronic lesions,? Science, vol. 219, no. 4582, pp. 308?310, 1983.View at: Publisher Site | Google Scholar
  27. C. Lock, G. Hermans, R. Pedotti et al., ?Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis,? Nature Medicine, vol. 8, no. 5, pp. 500?508, 2002.View at: Publisher Site | Google Scholar
  28. N. Muls, Z. Nasr, H. A. Dang, C. Sindic, and V. van Pesch, ?IL-22, GM-CSF and IL-17 in peripheral CD4+ T cell subpopulations during multiple sclerosis relapses and remission. Impact of corticosteroid therapy,? PloS one, vol. 12, no. 3, 2017.View at: Publisher Site | Google Scholar
  29. K. Wang, F. Song, A. Fernandez-Escobar, G. Luo, J. H. Wang, and Y. Sun, ?The Properties of Cytokines in Multiple Sclerosis: Pros and Cons,? The American Journal of the Medical Sciences, vol. 356, no. 6, pp. 552?560, 2018.View at: Publisher Site | Google Scholar
  30. H. S. Panitch, R. L. Hirsch, J. Schindler, and K. P. Johnson, ?Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system,? Neurology, vol. 37, no. 7, pp. 1097?1102, 1987.View at: Publisher Site | Google Scholar
  31. E. Havrdová, A. Belova, A. Goloborodko et al., ?Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study,? Journal of Neurology, vol. 263, no. 7, pp. 1287?1295, 2016.View at: Publisher Site | Google Scholar
  32. M. Salou, B. Nicol, A. Garcia, and D. A. Laplaud, ?Involvement of CD8(+) T cells in multiple sclerosis,? Frontiers in Immunology, vol. 6, p. 604, 2015.View at: Google Scholar
  33. I. Medana, M. A. Martinic, H. Wekerle, and H. Neumann, ?Transection of Major Histocompatibility Complex Class I-Induced Neurites by Cytotoxic T Lymphocytes,? The American Journal of Pathology, vol. 159, no. 3, pp. 809?815, 2001.View at: Publisher Site | Google Scholar
  34. C. Malmeström, J. Lycke, S. Haghighi et al., ?Relapses in multiple sclerosis are associated with increased CD8+ T-cell mediated cytotoxicity in CSF,? Journal of Neuroimmunology, vol. 196, no. 1-2, pp. 159?165, 2008.View at: Publisher Site | Google Scholar
  35. N. Melzer, S. G. Meuth, and H. Wiendl, ?CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability,? FASEB Journal, vol. 23, no. 11, pp. 3659?3673, 2009.View at: Publisher Site | Google Scholar
  36. M. Huber, S. Heink, A. Pagenstecher et al., ?IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis,? The Journal of Clinical Investigation, vol. 123, no. 1, pp. 247?260, 2013.View at: Publisher Site | Google Scholar
  37. K. M. Danikowski, S. Jayaraman, and B. S. Prabhakar, ?Regulatory T cells in multiple sclerosis and myasthenia gravis,? Journal of neuroinflammation, vol. 14, no. 1, p. 117, 2017.View at: Publisher Site | Google Scholar
  38. M. Kleinewietfeld and D. A. Hafler, ?Regulatory T cells in autoimmune neuroinflammation,? Immunological Reviews, vol. 259, no. 1, pp. 231?244, 2014.View at: Publisher Site | Google Scholar
  39. L. A. Stephens, K. H. Malpass, and S. M. Anderton, ?Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg,? European Journal of Immunology, vol. 39, no. 4, pp. 1108?1117, 2009.View at: Publisher Site | Google Scholar
  40. T. Schneider-Hohendorf, M.-P. Stenner, C. Weidenfeller et al., ?Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis,? European Journal of Immunology, vol. 40, no. 12, pp. 3581?3590, 2010.View at: Publisher Site | Google Scholar
  41. B. Fritzsching, J. Haas, F. König et al., ?Intracerebral human regulatory T cells: analysis of CD4+ CD25+ FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients,? PloS one, vol. 6, no. 3, 2011.View at: Publisher Site | Google Scholar
  42. B. Fritzsching, M. Korporal, J. Haas, P. H. Krammer, E. Suri-Payer, and B. Wildemann, ?Similar sensitivity of regulatory T cells towards CD95L-mediated apoptosis in patients with multiple sclerosis and healthy individuals,? Journal of the Neurological Sciences, vol. 251, no. 1-2, pp. 91?97, 2006.View at: Publisher Site | Google Scholar
  43. L. Lovato, S. N. Willis, S. J. Rodig et al., ?Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis,? Brain: A Journal of Neurology, vol. 134, no. 2, pp. 534?541, 2011.View at: Publisher Site | Google Scholar
  44. M. K. Sharief and E. J. Thompson, ?Intrathecal immunoglobulin M synthesis in multiple sclerosis. Relationship with clinical and cerebrospinal fluid parameters,? Brain: A Journal of Neurology, vol. 114, pp. 181?195, 1991.View at: Google Scholar
  45. R. P. Lisak, J. A. Benjamins, L. Nedelkoska et al., ?Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro,? Journal of Neuroimmunology, vol. 246, no. 1-2, pp. 85?95, 2012.View at: Publisher Site | Google Scholar
  46. R. P. Lisak, L. Nedelkoska, J. A. Benjamins et al., ?B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro,? Journal of Neuroimmunology, vol. 309, pp. 88?99, 2017.View at: Publisher Site | Google Scholar
  47. J. Wang, J. Wang, J. Wang, B. Yang, Q. Weng, and Q. He, ?Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis,? Frontiers in Pharmacology, vol. 10, p. 286, 2019.View at: Publisher Site | Google Scholar
  48. Y. Dong and V. W. Yong, ?When encephalitogenic T cells collaborate with microglia in multiple sclerosis,? Nature reviews Neurology, vol. 15, no. 12, pp. 704?717, 2019.View at: Publisher Site | Google Scholar
  49. F. Ginhoux and M. Prinz, ?Origin of Microglia: concepts and Controversies,? Cold Spring Harbor Perspectives in Biology, vol. 7, no. 8, 2015.View at: Publisher Site | Google Scholar
  50. R. C. Paolicelli, G. Bolasco, F. Pagani et al., ?Synaptic pruning by microglia is necessary for normal brain development,? Science, vol. 333, no. 6048, pp. 1456?1458, 2011.View at: Publisher Site | Google Scholar
  51. D. P. Schafer, E. K. Lehrman, A. G. Kautzman et al., ?Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement- Dependent Manner,? Neuron, vol. 74, no. 4, pp. 691?705, 2012.View at: Publisher Site | Google Scholar
  52. U.-K. Hanisch and H. Kettenmann, ?Microglia: active sensor and versatile effector cells in the normal and pathologic brain,? Nature Neuroscience, vol. 10, no. 11, pp. 1387?1394, 2007.View at: Publisher Site | Google Scholar
  53. H. Mathys, C. Adaikkan, F. Gao et al., ?Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution,? Cell Reports, vol. 21, no. 2, pp. 366?380, 2017.View at: Publisher Site | Google Scholar
  54. M. M. Hiremath, Y. Saito, G. W. Knapp, J. P. Y. Ting, K. Suzuki, and G. K. Matsushima, ?Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice,? Journal of Neuroimmunology, vol. 92, no. 1-2, pp. 38?49, 1998.View at: Publisher Site | Google Scholar
  55. D. A. Bakker and S. K. Ludwin, ?Blood-brain barrier permeability during Cuprizone-induced demyelination: Implications for the pathogenesis of immune-mediated demyelinating diseases,? Journal of the Neurological Sciences, vol. 78, no. 2, pp. 125?137, 1987.View at: Publisher Site | Google Scholar
  56. M. W. Salter and B. Stevens, ?Microglia emerge as central players in brain disease,? Nature Medicine, vol. 23, no. 9, pp. 1018?1027, 2017.View at: Publisher Site | Google Scholar
  57. S. Hong, L. Dissing-Olesen, and B. Stevens, ?New insights on the role of microglia in synaptic pruning in health and disease,? Current Opinion in Neurobiology, vol. 36, pp. 128?134, 2016.View at: Publisher Site | Google Scholar
  58. H. Gao, M. C. Danzi, C. S. Choi et al., ?Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis,? Cell Reports, vol. 18, no. 1, pp. 198?212, 2017.View at: Publisher Site | Google Scholar
  59. F. L. Heppner, R. M. Ransohoff, and B. Becher, ?Immune attack: the role of inflammation in Alzheimer disease,? Nature Reviews. Neuroscience, vol. 16, no. 6, pp. 358?372, 2015.View at: Publisher Site | Google Scholar
  60. M. Karamita, C. Barnum, W. Möbius et al., ?Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia,? JCI Insight, vol. 2, no. 8, 2017.View at: Publisher Site | Google Scholar
  61. D. Mrdjen, A. Pavlovic, F. J. Hartmann et al., ?High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease,? Immunity, vol. 48, no. 2, pp. 380?395.e6, 2018.View at: Publisher Site | Google Scholar
  62. E. J. McMahon, S. L. Bailey, C. V. Castenada, H. Waldner, and S. D. Miller, ?Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis,? Nature Medicine, vol. 11, no. 3, pp. 335?339, 2005.View at: Publisher Site | Google Scholar
  63. M. Greter, F. L. Heppner, M. P. Lemos et al., ?Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis,? Nature Medicine, vol. 11, no. 3, pp. 328?334, 2005.View at: Publisher Site | Google Scholar
  64. C.-C. Lin and B. T. Edelson, ?New Insights into the Role of IL-1? in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis,? Journal of Immunology, vol. 198, no. 12, pp. 4553?4560, 2017.View at: Publisher Site | Google Scholar
  65. B. D. Trapp, J. Peterson, R. M. Ransohoff, R. Rudick, S. Mörk, and L. Bö, ?Axonal transection in the lesions of multiple sclerosis,? The New England Journal of Medicine, vol. 338, no. 5, pp. 278?285, 1998.View at: Publisher Site | Google Scholar
  66. D. Y. S. Vogel, E. J. F. Vereyken, J. E. Glim et al., ?Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status,? Journal of Neuroinflammation, vol. 10, no. 1, p. 35, 2013.View at: Publisher Site | Google Scholar
  67. R. A. Sosa, C. Murphey, N. Ji, A. E. Cardona, and T. G. Forsthuber, ?The kinetics of myelin antigen uptake by myeloid cells in the central nervous system during experimental autoimmune encephalomyelitis,? Journal of Immunology, vol. 191, no. 12, pp. 5848?5857, 2013.View at: Publisher Site | Google Scholar
  68. R. M. Ransohoff and V. H. Perry, ?Microglial physiology: unique stimuli, specialized responses,? Annual Review of Immunology, vol. 27, no. 1, pp. 119?145, 2009.View at: Publisher Site | Google Scholar
  69. B. Almolda, B. González, and B. Castellano, ?Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE,? Journal of Neuroimmunology, vol. 223, no. 1-2, pp. 39?54, 2010.View at: Publisher Site | Google Scholar
  70. P. Italiani and D. Boraschi, ?From Monocytes to M1/M2 Macrophages:phenotypical vs. Functional Differentiation,? Frontiers in Immunology, vol. 5, p. 514, 2014.View at: Publisher Site | Google Scholar
  71. V. E. Miron, A. Boyd, J.-W. Zhao et al., ?M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination,? Nature Neuroscience, vol. 16, no. 9, pp. 1211?1218, 2013.View at: Publisher Site | Google Scholar
  72. C. Luo, C. Jian, Y. Liao et al., ?The role of microglia in multiple sclerosis,? Neuropsychiatric Disease and Treatment, vol. Volume 13, pp. 1661?1667, 2017.View at: Publisher Site | Google Scholar
  73. M. R. Kotter, W.-W. Li, C. Zhao, and R. J. Franklin, ?Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation,? The Journal of Neuroscience, vol. 26, no. 1, pp. 328?332, 2006.View at: Publisher Site | Google Scholar
  74. O. Butovsky, G. Landa, G. Kunis et al., ?Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis,? The Journal of Clinical Investigation, vol. 116, no. 4, pp. 905?915, 2006.View at: Publisher Site | Google Scholar
  75. H. Keren-Shaul, A. Spinrad, A. Weiner et al., ?A unique microglia type associated with restricting development of Alzheimer?s disease,? Cell, vol. 169, no. 7, pp. 1276?1290.e17, 2017.View at: Publisher Site | Google Scholar
  76. A. Bhattacharyya, R. Chattopadhyay, S. Mitra, and S. E. Crowe, ?Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases,? Physiological Reviews, vol. 94, no. 2, pp. 329?354, 2014.View at: Publisher Site | Google Scholar
  77. W. Dröge, ?Free radicals in the physiological control of cell function,? Physiological Reviews, vol. 82, no. 1, pp. 47?95, 2002.View at: Publisher Site | Google Scholar
  78. F. Ursini, M. Maiorino, and H. J. Forman, ?Redox homeostasis: the golden mean of healthy living,? Redox Biology, vol. 8, pp. 205?215, 2016.View at: Publisher Site | Google Scholar
  79. H. M. Abu-Soud, J. Wang, D. L. Rousseau, J. M. Fukuto, L. J. Ignarro, and D. J. Stuehr, ?Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis,? The Journal of Biological Chemistry, vol. 270, no. 39, pp. 22997?23006, 1995.View at: Publisher Site | Google Scholar
  80. S. B. Nimse and D. Pal, ?Free radicals, natural antioxidants, and their reaction mechanisms,? RSC Advances, vol. 5, no. 35, pp. 27986?28006, 2015.View at: Publisher Site | Google Scholar
  81. X. He, M. G. Chen, and Q. Ma, ?Activation of Nrf2 in defense against cadmium-induced oxidative stress,? Chemical Research in Toxicology, vol. 21, no. 7, pp. 1375?1383, 2008.View at: Publisher Site | Google Scholar
  82. J. D. Wardyn, A. H. Ponsford, and C. M. Sanderson, ?Dissecting molecular cross-talk between Nrf2 and NF-?B response pathways,? Biochemical Society Transactions, vol. 43, no. 4, pp. 621?626, 2015.View at: Publisher Site | Google Scholar
  83. C. Mylonas and D. Kouretas, ?Lipid peroxidation and tissue damage,? In vivo, vol. 13, no. 3, pp. 295?309, 1999.View at: Google Scholar
  84. G. Waris and H. Ahsan, ?Reactive oxygen species: role in the development of cancer and various chronic conditions,? Journal of carcinogenesis, vol. 5, no. 1, p. 14, 2006.View at: Publisher Site | Google Scholar
  85. M. L. Hegde, A. K. Mantha, T. K. Hazra, K. K. Bhakat, S. Mitra, and B. Szczesny, ?Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases,? Mechanisms of Ageing and Development, vol. 133, no. 4, pp. 157?168, 2012.View at: Publisher Site | Google Scholar
  86. K. J. Davies, M. E. Delsignore, and S. W. Lin, ?Protein damage and degradation by oxygen radicals. II. Modification of amino acids,? The Journal of Biological Chemistry, vol. 262, no. 20, pp. 9902?9907, 1987.View at: Google Scholar
  87. J. Hanna, A. Guerra-Moreno, J. Ang, and Y. Micoogullari, ?Protein degradation and the pathologic basis of disease,? The American Journal of Pathology, vol. 189, no. 1, pp. 94?103, 2019.View at: Publisher Site | Google Scholar
  88. M. L. Circu and T. Y. Aw, ?Reactive oxygen species, cellular redox systems, and apoptosis,? Free Radical Biology & Medicine, vol. 48, no. 6, pp. 749?762, 2010.View at: Publisher Site | Google Scholar
  89. K. Sinha, J. Das, P. B. Pal, and P. C. Sil, ?Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis,? Archives of Toxicology, vol. 87, no. 7, pp. 1157?1180, 2013.View at: Publisher Site | Google Scholar
  90. C. P. Baines, R. A. Kaiser, T. Sheiko, W. J. Craigen, and J. D. Molkentin, ?Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death,? Nature Cell Biology, vol. 9, no. 5, pp. 550?555, 2007.View at: Publisher Site | Google Scholar
  91. A. C. Schinzel, O. Takeuchi, Z. Huang et al., ?Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia,? Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12005?12010, 2005.View at: Publisher Site | Google Scholar
  92. Y. Cheng, E. Gulbins, and D. Siemen, ?Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel,? Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, vol. 27, no. 3-4, pp. 191?200, 2011.View at: Publisher Site | Google Scholar
  93. A. J. Kowaltowski, A. E. Vercesi, and R. F. Castilho, ?Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition,? Biochimica et Biophysica Acta, vol. 1318, no. 3, pp. 395?402, 1997.View at: Publisher Site | Google Scholar
  94. C. Martel, Z. Wang, and C. Brenner, ?VDAC phosphorylation, a lipid sensor influencing the cell fate,? Mitochondrion, vol. 19, pp. 69?77, 2014.View at: Publisher Site | Google Scholar
  95. M. Le Bras, M. V. Clement, S. Pervaiz, and C. Brenner, ?Reactive oxygen species and the mitochondrial signaling pathway of cell death,? Histology and Histopathology, vol. 20, no. 1, pp. 205?219, 2005.View at: Publisher Site | Google Scholar
  96. C. P. Baines, R. A. Kaiser, N. H. Purcell et al., ?Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death,? Nature, vol. 434, no. 7033, pp. 658?662, 2005.View at: Publisher Site | Google Scholar
  97. E. Basso, L. Fante, J. Fowlkes, V. Petronilli, M. A. Forte, and P. Bernardi, ?Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D,? The Journal of Biological Chemistry, vol. 280, no. 19, pp. 18558?18561, 2005.View at: Publisher Site | Google Scholar
  98. D. R. Green and G. Kroemer, ?The pathophysiology of mitochondrial cell death,? Science, vol. 305, no. 5684, pp. 626?629, 2004.View at: Publisher Site | Google Scholar
  99. R. Colavitti and T. Finkel, ?Reactive oxygen species as mediators of cellular senescence,? IUBMB Life, vol. 57, no. 4-5, pp. 277?281, 2005.View at: Publisher Site | Google Scholar
  100. B. Schenk and S. Fulda, ?Reactive oxygen species regulate Smac mimetic/TNF?-induced necroptotic signaling and cell death,? Oncogene, vol. 34, no. 47, pp. 5796?5806, 2015.View at: Publisher Site | Google Scholar
  101. G. Filomeni, D. de Zio, and F. Cecconi, ?Oxidative stress and autophagy: the clash between damage and metabolic needs,? Cell Death and Differentiation, vol. 22, no. 3, pp. 377?388, 2015.View at: Publisher Site | Google Scholar
  102. M. Adamczyk-Sowa, S. Galiniak, E. ?yracka et al., ?Oxidative modification of blood serum proteins in multiple sclerosis after interferon beta and melatonin treatment,? Oxidative Medicine and Cellular Longevity, vol. 2017, 8 pages, 2017.View at: Publisher Site | Google Scholar
  103. M. Sadeghian, V. Mastrolia, A. Rezaei Haddad et al., ?Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis,? Scientific Reports, vol. 6, no. 1, 2016.View at: Publisher Site | Google Scholar
  104. D. J. Mahad, I. Ziabreva, G. Campbell et al., ?Mitochondrial changes within axons in multiple sclerosis,? Brain: A Journal of Neurology, vol. 132, no. 5, pp. 1161?1174, 2009.View at: Publisher Site | Google Scholar
  105. L. Haider, M. T. Fischer, J. M. Frischer et al., ?Oxidative damage in multiple sclerosis lesions,? Brain: A Journal of Neurology, vol. 134, no. 7, pp. 1914?1924, 2011.View at: Publisher Site | Google Scholar
  106. I. Niki?, D. Merkler, C. Sorbara et al., ?A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis,? Nature Medicine, vol. 17, no. 4, pp. 495?499, 2011.View at: Publisher Site | Google Scholar
  107. A. Bitsch, J. Schuchardt, S. Bunkowski, T. Kuhlmann, and W. Brück, ?Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation,? Brain, vol. 123, no. 6, pp. 1174?1183, 2000.View at: Publisher Site | Google Scholar
  108. J. van Horssen, G. Schreibelt, J. Drexhage et al., ?Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression,? Free Radical Biology & Medicine, vol. 45, no. 12, pp. 1729?1737, 2008.View at: Publisher Site | Google Scholar
  109. J. van Horssen, J. A. R. Drexhage, T. Flor, W. Gerritsen, P. van der Valk, and H. E. de Vries, ?Nrf2 and DJ1 are consistently upregulated in inflammatory multiple sclerosis lesions,? Free Radical Biology & Medicine, vol. 49, no. 8, pp. 1283?1289, 2010.View at: Publisher Site | Google Scholar
  110. A. A. Mossakowski, J. Pohlan, D. Bremer et al., ?Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation,? Acta Neuropathologica, vol. 130, no. 6, pp. 799?814, 2015.View at: Publisher Site | Google Scholar
  111. L. Haider, ?Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis,? Oxidative Medicine and Cellular Longevity, vol. 2015, 10 pages, 2015.View at: Publisher Site | Google Scholar
  112. M. Gitik, S. Liraz-Zaltsman, P.-A. Oldenborg, F. Reichert, and S. Rotshenker, ?Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRP? (signal regulatory protein-?) on phagocytes,? Journal of Neuroinflammation, vol. 8, no. 1, p. 24, 2011.View at: Publisher Site | Google Scholar
  113. V. H. Perry, J. A. R. Nicoll, and C. Holmes, ?Microglia in neurodegenerative disease,? Nature Reviews. Neurology, vol. 6, no. 4, pp. 193?201, 2010.View at: Publisher Site | Google Scholar
  114. B. Halliwell, ?Oxidative stress and neurodegeneration: where are we now?? Journal of Neurochemistry, vol. 97, no. 6, pp. 1634?1658, 2006.View at: Publisher Site | Google Scholar
  115. S. P. Olesen, ?Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain,? Acta Physiologica Scandinavica, vol. 129, no. 2, pp. 181?187, 1987.View at: Publisher Site | Google Scholar
  116. G. Giovannoni, N. C. Silver, J. O'Riordan et al., ?Increased urinary nitric oxide metabolites in patients with multiple sclerosis correlates with early and relapsing disease,? Multiple Sclerosis Journal, vol. 5, no. 5, pp. 335?341, 1999.View at: Publisher Site | Google Scholar
  117. A. Goes, D. Wouters, S. M. A. Pol et al., ?Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro,? FASEB Journal, vol. 15, no. 10, pp. 1852?1854, 2001.View at: Publisher Site | Google Scholar
  118. A. van der Goes, J. Brouwer, K. Hoekstra, D. Roos, T. K. van den Berg, and C. D. Dijkstra, ?Reactive oxygen species are required for the phagocytosis of myelin by macrophages,? Journal of Neuroimmunology, vol. 92, no. 1-2, pp. 67?75, 1998.View at: Publisher Site | Google Scholar
  119. D. Odobasic, A. R. Kitching, and S. R. Holdsworth, ?Neutrophil-mediated regulation of innate and adaptive immunity: the role of myeloperoxidase,? Journal of Immunology Research, vol. 2016, Article ID 2349817, 11 pages, 2016.View at: Publisher Site | Google Scholar
  120. K. Ohl, K. Tenbrock, and M. Kipp, ?Oxidative stress in multiple sclerosis: central and peripheral mode of action,? Experimental Neurology, vol. 277, pp. 58?67, 2016.View at: Publisher Site | Google Scholar
  121. S. Devadas, L. Zaritskaya, S. G. Rhee, L. Oberley, and M. S. Williams, ?Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression,? The Journal of Experimental Medicine, vol. 195, no. 1, pp. 59?70, 2002.View at: Publisher Site | Google Scholar
  122. B. Adamczyk and M. Adamczyk-Sowa, ?New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis,? Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 1973834, 18 pages, 2016.View at: Publisher Site | Google Scholar
  123. K. J. Barnham, C. L. Masters, and A. I. Bush, ?Neurodegenerative diseases and oxidative stress,? Nature Reviews Drug Discovery, vol. 3, no. 3, pp. 205?214, 2004.View at: Publisher Site | Google Scholar
  124. R. Fischer and O. Maier, ?Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF,? Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 610813, 18 pages, 2015.View at: Publisher Site | Google Scholar
  125. K. B. Beckman and B. N. Ames, ?The free radical theory of aging matures,? Physiological Reviews, vol. 78, no. 2, pp. 547?581, 1998.View at: Publisher Site | Google Scholar
  126. E. M. Martínez-Cáceres, M. A. Barrau, L. Brieva, C. Espejo, N. Barberà, and X. Montalban, ?Treatment with methylprednisolone in relapses of multiple sclerosis patients: immunological evidence of immediate and short-term but not long-lasting effects,? Clinical and Experimental Immunology, vol. 127, no. 1, pp. 165?171, 2002.View at: Publisher Site | Google Scholar
  127. D. H. Miller, A. J. Thompson, S. P. Morrissey et al., ?High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect,? Journal of Neurology, Neurosurgery, and Psychiatry, vol. 55, no. 6, pp. 450?453, 1992.View at: Publisher Site | Google Scholar
  128. F. Lublin, ?History of modern multiple sclerosis therapy,? Journal of Neurology, vol. 252, no. S3, pp. iii3?iii9, 2005.View at: Publisher Site | Google Scholar
  129. M. Gholamzad, M. Ebtekar, M. S. Ardestani et al., ?A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future,? Inflammation Research, vol. 68, no. 1, pp. 25?38, 2019.View at: Publisher Site | Google Scholar
  130. C. Oreja-Guevara, J. Ramos-Cejudo, L. S. Aroeira, B. Chamorro, and E. Diez-Tejedor, ?TH1/TH2 cytokine profile in relapsing-remitting multiple sclerosis patients treated with Glatiramer acetate or Natalizumab,? BMC Neurology, vol. 12, no. 1, 2012.View at: Publisher Site | Google Scholar
  131. J. Haas, M. Korporal, B. Balint, B. Fritzsching, A. Schwarz, and B. Wildemann, ?Glatiramer acetate improves regulatory T-cell function by expansion of naive CD4+CD25+FOXP3+CD31+ T-cells in patients with multiple sclerosis,? Journal of Neuroimmunology, vol. 216, no. 1-2, pp. 113?117, 2009.View at: Publisher Site | Google Scholar
  132. E. A. Mills, M. A. Ogrodnik, A. Plave, and Y. Mao-Draayer, ?Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis,? Frontiers in Neurology, vol. 9, 2018.View at: Publisher Site | Google Scholar
  133. T. Ruck, S. Bittner, H. Wiendl, and S. Meuth, ?Alemtuzumab in multiple sclerosis: mechanism of action and beyond,? International Journal of Molecular Sciences, vol. 16, no. 7, pp. 16414?16439, 2015.View at: Publisher Site | Google Scholar
  134. K.-M. Myhr, Ø. Torkildsen, A. Lossius, L. Bø, and T. Holmøy, ?B cell depletion in the treatment of multiple sclerosis,? Expert Opinion on Biological Therapy, vol. 19, no. 3, pp. 261?271, 2019.View at: Publisher Site | Google Scholar
  135. S. Faissner and R. Gold, ?Progressive multiple sclerosis: latest therapeutic developments and future directions,? Therapeutic Advances in Neurological Disorders, vol. 12, 2019.View at: Publisher Site | Google Scholar
  136. R. Fischer, R. Kontermann, and O. Maier, ?Targeting sTNF/TNFR1 signaling as a new therapeutic strategy,? Antibodies, vol. 4, no. 1, pp. 48?70, 2015.View at: Publisher Site | Google Scholar
  137. C. Monaco, J. Nanchahal, P. Taylor, and M. Feldmann, ?Anti-TNF therapy: past, present and future,? International Immunology, vol. 27, no. 1, pp. 55?62, 2014.View at: Publisher Site | Google Scholar
  138. B. W. van Oosten, F. Barkhof, L. Truyen et al., ?Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2,? Neurology, vol. 47, no. 6, pp. 1531?1534, 1996.View at: Publisher Site | Google Scholar
  139. B. G. W. Arnason, G. Jacobs, M. Hanlon et al., ?TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group,? Neurology, vol. 53, no. 3, pp. 457?465, 1999.View at: Google Scholar
  140. H.-P. Hartung and B. C. Kieseier, ?Atacicept: targeting B cells in multiple sclerosis,? Therapeutic Advances in Neurological Disorders, vol. 3, no. 4, pp. 205?216, 2010.View at: Publisher Site | Google Scholar
  141. L. Kappos, H. P. Hartung, M. S. Freedman et al., ?Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial,? The Lancet Neurology, vol. 13, no. 4, pp. 353?363, 2014.View at: Publisher Site | Google Scholar
  142. F. Kees, ?Dimethyl fumarate: a Janus-faced substance?? Expert Opinion on Pharmacotherapy, vol. 14, no. 11, pp. 1559?1567, 2013.View at: Publisher Site | Google Scholar
  143. H. Huang, A. Taraboletti, and L. P. Shriver, ?Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes,? Redox Biology, vol. 5, pp. 169?175, 2015.View at: Publisher Site | Google Scholar
  144. E. D. Miller, A. Dziedzic, J. Saluk-Bijak, and M. Bijak, ?A review of various antioxidant compounds and their potential utility as complementary therapy in multiple sclerosis,? Nutrients, vol. 11, no. 7, p. 1528, 2019.View at: Publisher Site | Google Scholar
  145. E. Miller, A. Walczak, I. Majsterek, and J. K?dziora, ?Melatonin reduces oxidative stress in the erythrocytes of multiple sclerosis patients with secondary progressive clinical course,? Journal of Neuroimmunology, vol. 257, no. 1-2, pp. 97?101, 2013.View at: Publisher Site | Google Scholar
  146. S. Emamgholipour, A. Hossein-nezhad, M. A. Sahraian, F. Askarisadr, and M. Ansari, ?Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes,? Life Sciences, vol. 145, pp. 34?41, 2016.View at: Publisher Site | Google Scholar
  147. M. F. Farez, I. D. Mascanfroni, S. P. Méndez-Huergo et al., ?Melatonin contributes to the seasonality of multiple sclerosis relapses,? Cell, vol. 162, no. 6, pp. 1338?1352, 2015.View at: Publisher Site | Google Scholar
  148. M. Sanoobar, S. Eghtesadi, A. Azimi, M. Khalili, S. Jazayeri, and M. Reza Gohari, ?Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing-remitting multiple sclerosis,? The International Journal of Neuroscience, vol. 123, no. 11, pp. 776?782, 2013.View at: Publisher Site | Google Scholar
  149. S. M. Fiebiger, H. Bros, T. Grobosch et al., ?The antioxidant idebenone fails to prevent or attenuate chronic experimental autoimmune encephalomyelitis in the mouse,? Journal of Neuroimmunology, vol. 262, no. 1-2, pp. 66?71, 2013.View at: Publisher Site | Google Scholar
  150. L. Probert, ?TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects,? Neuroscience, vol. 302, pp. 2?22, 2015.View at: Publisher Site | Google Scholar
  151. H. G. Novrup, V. Bracchi-Ricard, D. G. Ellman et al., ?Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice,? Journal of Neuroinflammation, vol. 11, no. 1, p. 159, 2014.View at: Publisher Site | Google Scholar
  152. C. J. Barnum, X. Chen, J. Chung et al., ?Peripheral administration of the selective inhibitor of soluble tumor necrosis factor (TNF) XPro®1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats,? Journal of Parkinson's Disease, vol. 4, no. 3, pp. 349?360, 2014.View at: Publisher Site | Google Scholar
  153. T. del Rivero, R. Fischer, F. Yang, K. A. Swanson, and J. R. Bethea, ?Tumor necrosis factor receptor 1 inhibition is therapeutic for neuropathic pain in males but not in females,? Pain, vol. 160, no. 4, pp. 922?931, 2019.View at: Publisher Site | Google Scholar
  154. S. K. Williams, R. Fairless, O. Maier et al. et al., ?Anti-TNFR1 targeting in humanized mice ameliorates disease in a model of multiple sclerosis,? Scientific Reports, vol. 8, no. 1, p. 13628, 2018.View at: Publisher Site | Google Scholar
  155. R. Brambilla, J. J. Ashbaugh, R. Magliozzi et al., ?Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination,? Brain: A Journal of Neurology, vol. 134, no. 9, pp. 2736?2754, 2011.View at: Publisher Site | Google Scholar
  156. E. Taoufik, V. Tseveleki, S. Y. Chu et al., ?Transmembrane tumour necrosis factor is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-?B,? Brain: A Journal of Neurology, vol. 134, no. 9, pp. 2722?2735, 2011.View at: Publisher Site | Google Scholar
  157. H. A. Arnett, J. Mason, M. Marino, K. Suzuki, G. K. Matsushima, and J. P. Y. Ting, ?TNF? promotes proliferation of oligodendrocyte progenitors and remyelination,? Nature Neuroscience, vol. 4, no. 11, pp. 1116?1122, 2001.View at: Publisher Site | Google Scholar
  158. P. M. Madsen, D. Motti, S. Karmally et al., ?Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination,? The Journal of Neuroscience, vol. 36, no. 18, pp. 5128?5143, 2016.View at: Publisher Site | Google Scholar
  159. R. Fischer, H. Wajant, R. Kontermann, K. Pfizenmaier, and O. Maier, ?Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor,? Glia, vol. 62, no. 2, pp. 272?283, 2014.View at: Publisher Site | Google Scholar
  160. R. Fischer, O. Maier, M. Siegemund, H. Wajant, P. Scheurich, and K. Pfizenmaier, ?A TNF receptor 2 selective agonist rescues human neurons from oxidative stress-induced cell death,? PloS one, vol. 6, no. 11, p. e27621, 2011.View at: Publisher Site | Google Scholar
  161. L. Marchetti, M. Klein, K. Schlett, K. Pfizenmaier, and U. L. M. Eisel, ?Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway,? The Journal of Biological Chemistry, vol. 279, no. 31, pp. 32869?32881, 2004.View at: Publisher Site | Google Scholar
  162. Y. Dong, R. Fischer, P. J. W. Naudé et al., ?Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration,? Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 43, pp. 12304?12309, 2016.View at: Publisher Site | Google Scholar
  163. O. Maier, R. Fischer, C. Agresti, and K. Pfizenmaier, ?TNF receptor 2 protects oligodendrocyte progenitor cells against oxidative stress,? Biochemical and Biophysical Research Communications, vol. 440, no. 2, pp. 336?341, 2013.View at: Publisher Site | Google Scholar
  164. R. Fischer, J. Marsal, C. Guttà et al., ?Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2,? Scientific Reports, vol. 7, no. 1, 2017.View at: Publisher Site | Google Scholar
  165. R. Fischer, M. Proske, M. Duffey et al., ?Selective activation of tumor necrosis factor receptor II induces antiinflammatory responses and alleviates experimental arthritis,? Arthritis & rheumatology, vol. 70, no. 5, pp. 722?735, 2018.View at: Publisher Site | Google Scholar
  166. R. Fischer, T. Padutsch, V. Bracchi-Ricard et al., ?Exogenous activation of tumor necrosis factor receptor 2 promotes recovery from sensory and motor disease in a model of multiple sclerosis,? Brain, behavior, and immunity, vol. 81, pp. 247?259, 2019.View at: Publisher Site | Google Scholar
  167. R. Fischer, M. Sendetski, T. del Rivero et al., ?TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes,? Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 34, pp. 17045?17050, 2019.View at: Publisher Site | Google Scholar
  168. V. Pegoretti, W. Baron, J. D. Laman, and U. L. M. Eisel, ?Selective modulation of TNF-TNFRs signaling: insights for multiple sclerosis treatment,? Frontiers in Immunology, vol. 9, p. 925, 2018.View at: Publisher Site | Google Scholar
  169. K. Frei, S. Fredrikson, A. Fontana, and H. Link, ?Interleukin-6 is elevated in plasma in multiple sclerosis,? Journal of Neuroimmunology, vol. 31, no. 2, pp. 147?153, 1991.View at: Publisher Site | Google Scholar
  170. D. Maimone, G. C. Guazzi, and P. Annunziata, ?IL-6 detection in multiple sclerosis brain,? Journal of the Neurological Sciences, vol. 146, no. 1, pp. 59?65, 1997.View at: Publisher Site | Google Scholar
  171. E. B. Samoilova, J. L. Horton, B. Hilliard, T.-S. T. Liu, and Y. Chen, ?IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells,? Journal of Immunology, vol. 161, no. 12, pp. 6480?6486, 1998.View at: Google Scholar
  172. M. Rothaug, C. Becker-Pauly, and S. Rose-John, ?The role of interleukin-6 signaling in nervous tissue,? Biochimica et biophysica acta, vol. 1863, no. 6, pp. 1218?1227, 2016.View at: Publisher Site | Google Scholar
  173. K. Serizawa, H. Tomizawa-Shinohara, M. Magi, K. Yogo, and Y. Matsumoto, ?Anti-IL-6 receptor antibody improves pain symptoms in mice with experimental autoimmune encephalomyelitis,? Journal of Neuroimmunology, vol. 319, pp. 71?79, 2018.View at: Publisher Site | Google Scholar
  174. M. Araki, M. Nakamura, W. Sato, Y. Takahashi, and T. Yamamura, ?Potential benefits of the anti-IL-6 receptor antibody tocilizumab in multiple sclerosis patients with high plasmablast frequency,? Journal of the Neurological Sciences, vol. 381, p. 131, 2017.View at: Publisher Site | Google Scholar
  175. P. Beauchemin and R. Carruthers, ?Response to: tocilizumab, neuromyelitis optica (NMO), and multiple sclerosis,? Multiple Sclerosis, vol. 22, no. 14, pp. 1892-1893, 2016.View at: Publisher Site | Google Scholar
  176. M. J. McGeachy, K. S. Bak-Jensen, Y. Chen et al., ?TGF-? and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology,? Nature Immunology, vol. 8, no. 12, pp. 1390?1397, 2007.View at: Publisher Site | Google Scholar
  177. E. Bettelli, Y. Carrier, W. Gao et al., ?Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,? Nature, vol. 441, no. 7090, pp. 235?238, 2006.View at: Publisher Site | Google Scholar
  178. J. Thöne and R. Linker, ?Laquinimod in the treatment of multiple sclerosis: a review of the data so far,? Drug Design, Development and Therapy, vol. 10, pp. 1111?1118, 2016.View at: Publisher Site | Google Scholar
  179. M. Rosenzwajg, R. Lorenzon, P. Cacoub et al., ?Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial,? Annals of the Rheumatic Diseases, vol. 78, no. 2, pp. 209?217, 2019.View at: Publisher Site | Google Scholar
  180. F. L. Heppner, M. Greter, D. Marino et al., ?Experimental autoimmune encephalomyelitis repressed by microglial paralysis,? Nature Medicine, vol. 11, no. 2, pp. 146?152, 2005.View at: Publisher Site | Google Scholar
  181. M. Prinz and J. Priller, ?Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease,? Nature Reviews Neuroscience, vol. 15, no. 5, pp. 300?312, 2014.View at: Publisher Site | Google Scholar
  182. M. Olah, S. Amor, N. Brouwer et al., ?Identification of a microglia phenotype supportive of remyelination,? Glia, vol. 60, no. 2, pp. 306?321, 2012.View at: Publisher Site | Google Scholar
  183. A. Lampron, A. Larochelle, N. Laflamme et al., ?Inefficient clearance of myelin debris by microglia impairs remyelinating processes,? The Journal of Experimental Medicine, vol. 212, no. 4, pp. 481?495, 2015.View at: Publisher Site | Google Scholar
  184. T. Prod?homme and S. S. Zamvil, ?The evolving mechanisms of action of glatiramer acetate,? Cold Spring Harbor perspectives in medicine, vol. 9, no. 2, 2019.View at: Publisher Site | Google Scholar
  185. P. M. Steed, M. G. Tansey, J. Zalevsky et al., ?Inactivation of TNF signaling by rationally designed dominant-negative TNF variants,? Science, vol. 301, no. 5641, pp. 1895?1898, 2003.View at: Publisher Site | Google Scholar
  186. T. Veremeyko, A. W. Y. Yung, M. Dukhinova et al., ?Cyclic AMP pathway suppress autoimmune neuroinflammation by inhibiting functions of encephalitogenic CD4 T cells and enhancing M2 macrophage polarization at the site of inflammation,? Frontiers in Immunology, vol. 9, 2018.View at: Publisher Site | Google Scholar
  187. Q. Weng, J. Wang, J. Wang et al., ?Lenalidomide regulates CNS autoimmunity by promoting M2 macrophages polarization,? Cell death & Disease, vol. 9, no. 2, p. 251, 2018.View at: Publisher Site | Google Scholar
  188. J. Dörr and F. Paul, ?The transition from first-line to second-line therapy in multiple sclerosis,? Current Treatment Options in Neurology, vol. 17, no. 6, p. 354, 2015.View at: Publisher Site | Google Scholar
  189. A. Gajofatto and M. D. Benedetti, ?Treatment strategies for multiple sclerosis: when to start, when to change, when to stop?? World Journal of Clinical Cases, vol. 3, no. 7, pp. 545?555, 2015.View at: Publisher Site | Google Scholar
  190. S. Hewlings and D. Kalman, ?Curcumin: a review of its? effects on human health,? Foods, vol. 6, no. 10, p. 92, 2017.View at: Publisher Site | Google Scholar
  191. C. Natarajan and J. J. Bright, ?Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes,? Journal of Immunology, vol. 168, no. 12, pp. 6506?6513, 2002.View at: Publisher Site | Google Scholar
  192. V. P. Palace, N. Khaper, Q. Qin, and P. K. Singal, ?Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease,? Free Radical Biology & Medicine, vol. 26, no. 5-6, pp. 746?761, 1999.View at: Publisher Site | Google Scholar
  193. H. T. Besler, S. Ç. Çomo?lu, and Z. ?. OkÇu, ?Serum levels of antioxidant vitamins and lipid peroxidation in multiple sclerosis,? Nutritional Neuroscience, vol. 5, no. 3, pp. 215?220, 2013.View at: Publisher Site | Google Scholar
  194. A. A. Saboor-Yaraghi, M. H. Harirchian, N. Mohammadzadeh Honarvar et al., ?The effect of vitamin A supplementation on FoxP3 and TGF-? gene expression in Avonex-treated multiple sclerosis patients,? Journal of molecular neuroscience: MN, vol. 56, no. 3, pp. 608?612, 2015.View at: Publisher Site | Google Scholar
  195. M. Raverdeau, C. J. Breen, A. Misiak, and K. H. G. Mills, ?Retinoic acid suppresses IL-17 production and pathogenic activity of ?? T cells in CNS autoimmunity,? Immunology and Cell Biology, vol. 94, no. 8, pp. 763?773, 2016.View at: Publisher Site | Google Scholar
  196. A. Carr and B. Frei, ?Does vitamin C act as a pro-oxidant under physiological conditions?? FASEB Journal, vol. 13, no. 9, pp. 1007?1024, 1999.View at: Publisher Site | Google Scholar
  197. Y.-e. Guo, N. Suo, X. Cui, Q. Yuan, and X. Xie, ?Vitamin C promotes oligodendrocytes generation and remyelination,? Glia, vol. 66, no. 7, pp. 1302?1316, 2018.View at: Publisher Site | Google Scholar
  198. H. Wiseman, ?Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action,? FEBS Letters, vol. 326, no. 1-3, pp. 285?288, 1993.View at: Publisher Site | Google Scholar
  199. T. F. Runia, W. C. J. Hop, Y. B. de Rijke, D. Buljevac, and R. Q. Hintzen, ?Lower serum vitamin D levels are associated with a higher relapse risk in multiple sclerosis,? Neurology, vol. 79, no. 3, pp. 261?266, 2012.View at: Publisher Site | Google Scholar
  200. D. Häusler and M. S. Weber, ?Vitamin D supplementation in central nervous system demyelinating disease-enough is enough,? International Journal of Molecular Sciences, vol. 20, no. 1, p. 218, 2019.View at: Publisher Site | Google Scholar
  201. M. G. Traber and J. Atkinson, ?Vitamin E, antioxidant and nothing more,? Free Radical Biology & Medicine, vol. 43, no. 1, pp. 4?15, 2007.View at: Publisher Site | Google Scholar
  202. K. I. Løken-Amsrud, K. M. Myhr, S. J. Bakke et al., ?Alpha-tocopherol and MRI outcomes in multiple sclerosis--association and prediction,? PloS one, vol. 8, no. 1, p. e54417, 2013.View at: Publisher Site | Google Scholar
  203. H. Xue, H. Ren, L. Zhang et al., ?Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells,? Iranian Journal of Basic Medical Sciences, vol. 19, no. 5, pp. 561?566, 2016.View at: Google Scholar