Oxidative Stress, it's
triggers in causing runaway Inflammation and its role in MS (Multiple Sclerosis) and other Neuropathic diseases

Excerpts from a publication by, Valentina Pegoretti,1 Kathryn A. Swanson,2 John R. Bethea,2 Lesley Probert,3 Ulrich L. M. Eisel,1 and Roman Fischer 4 Academic Editor: Víctor M. Mendoza-Núñez et al.
Molecular Hydrogen and its ability to rapidly cross the blood brain or any membrane barrier, has been proven to be a very powerful, non toxic, antioxidant and anti-inflammatory agent, making it and excellent choice to combat and reverse the effects of OS(oxidative stress), ROS (reactive oxygen species), and INFLAMMATION (normally the bodies way of protecting us but in its chronic format it is very harmful) in Neuropathic diseases.
WHAT IS MS AND WHICH METABOLIC PROCESSES TRIGGERS AND AGGRAVATES IT?
CNS (Central nervous system) inflammation is a major driver of MS pathology. Differential immune responses, including the adaptive and the innate immune system, are observed at various stages of MS and drive disease development and progression. Next to these immune-mediated mechanisms, other mediators contribute to MS pathology. These include immune-independent cell death (Apoptosis) of oligodendrocytes (Oligodendrocytes are the myelinating, or protective cells structures of the central nervous system) and neurons as well as oxidative stress-induced tissue damage. In particular, the complex influence of oxidative stress on inflammation and vice versa makes therapeutic interference complex.
Multiple sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system (CNS) that is characterized by chronic inflammation, demyelination, due to cell death and axon and neuronal loss. Depending on the location of the demyelinating lesions, MS patients can develop almost any neurological sign or symptom, including motor, sensory, and cognitive impairment [1]. The most common symptoms are numbness, muscle spasms, ataxia, walking difficulties, bladder or visual problems, fatigue, pain, depression, and MS-related dementia [1]. One of the most frequent nonmotor MS-associated symptoms is chronic neuropathic pain (CNP), a long-lasting chronic pain that affects approx. 60% of MS patients and dramatically reduces their quality of life.
A growing amount of data suggest that oxidative injury and subsequent mitochondrial damage play a pathogenic role for neurodegeneration [13]. MS is thought to be a primarily inflammatory disease, in which demyelination and tissue injury are driven by immune-mediated mechanisms throughout all different stages and in all different courses [14], other data indicate that MS is a primary neurodegenerative disease, which is modified and amplified by the inflammatory process [15]. Indeed, oligodendrocyte apoptosis in MS lesions and tissue damage can occur independently of lymphocytes or peripheral macrophages [16], indicating that non immune mediated mechanisms contribute to MS pathology.
WHY CONSIDER HYDROGEN AS AN ADJUNCT, LONG TERM TREATMENT FOR DEGENERATIVE NEUROPATHIC DISEASES
Please refer to these previously published articles on the effects of Hydrogen on various aspects of our health
https://kyksa.com/for-the-sceptical-amongst-us-the-logic-of-drinking-molecular-hydrogen-rich-water-
https://kyksa.com/does-drinking-h-rich-water-improve-brain-health-
https://kyksa.com/why-chosse-molecular-hydrogen
Let's start off by listing what is by now well established medical and scientific fact;
- Molecular Hydrogen is currently the most potent and only consumable, intercellular, (inside the cell), antioxidant known in the scientific world.
- Because it is such a powerful and selective anti oxidant at neutralising the unwanted ROS's from our metabolic processes even at cellular level it has the ability to interrupt or down regulate the formation of cytokines, wich if left unchecked causes runaway cytokine storms that results in severe inflammation, cell damage and cell death.
- Hydrogens ability to repair damage caused by Oxidative stress and runaway inflammation is further amplified by it ability to correct cell replication and replacement by modulating (fixing) cells at RNA and DNA level thru its impact on gene expression.
- The application of Hydrogen gas consumption for health reasons has been proven to have tremendous impact on other degenerative Neuropathic diseases like Alzheimer's, Parkinson's and Dementia to name but a few.
- It then follows that Molecular Hydrogen could have a profound impact on MS and current studies and medical trails underpin this philosophy with a rapid and ever growing body of anecdotal, scientific and medical evidence that Hydrogen Gas consumed by inhalation, ingestion or intravascular saline solution injection, is most probably one of the most significant medical and general health, discoveries / applications of the 21st Century
References;
- A. Compston and A. Coles, ?Multiple sclerosis,? The Lancet, vol. 372, no. 9648, pp. 1502?1517, 2008.View at: Publisher Site | Google Scholar
- K. L. Murphy, J. R. Bethea, and R. Fischer, Multiple Sclerosis: Perspectives in Treatment and Pathogenesis: Neuropathic Pain in Multiple Sclerosis?Current Therapeutic Intervention and Future Treatment Perspectives, Codon publicationshttps://exonpublications.com/index.php/exon/article/view/153, Brisbane (AU), 2017.
- J. Drulovic, V. Basic-Kes, S. Grgic et al., ?The Prevalence of Pain in Adults with Multiple Sclerosis: A Multicenter Cross-Sectional Survey,? Pain medicine, vol. 16, no. 8, pp. 1597?1602, 2015.View at: Publisher Site | Google Scholar
- N. Khan and M. T. Smith, ?Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models,? Inflammopharmacology, vol. 22, no. 1, pp. 1?22, 2014.View at: Publisher Site | Google Scholar
- P. Browne, D. Chandraratna, C. Angood et al., ?Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity,? Neurology, vol. 83, no. 11, pp. 1022?1024, 2014.View at: Publisher Site | Google Scholar
- A. D. Sadovnick and P. A. Baird, ?The familial nature of multiple sclerosis: age-corrected empiric recurrence risks for children and siblings of patients,? Neurology, vol. 38, no. 6, pp. 990-991, 1988.View at: Publisher Site | Google Scholar
- P.-A. Gourraud, H. F. Harbo, S. L. Hauser, and S. E. Baranzini, ?The genetics of multiple sclerosis: an up-to-date review,? Immunological Reviews, vol. 248, no. 1, pp. 87?103, 2012.View at: Publisher Site | Google Scholar
- M. Koch, E. Kingwell, P. Rieckmann, and H. Tremlett, ?The natural history of primary progressive multiple sclerosis,? Neurology, vol. 73, no. 23, pp. 1996?2002, 2009.View at: Publisher Site | Google Scholar
- A. B. O'Connor, S. R. Schwid, D. N. Herrmann et al., ?Pain associated with multiple sclerosis: systematic review and proposed classification,? Pain, vol. 137, no. 1, pp. 96?111, 2008.View at: Publisher Site | Google Scholar
- H. Lassmann, ?Pathogenic mechanisms associated with different clinical courses of multiple sclerosis,? Frontiers in Immunology, vol. 9, p. 3116, 2018.View at: Google Scholar
- R. Li, K. R. Patterson, and A. Bar-Or, ?Reassessing B cell contributions in multiple sclerosis,? Nature Immunology, vol. 19, no. 7, pp. 696?707, 2018.View at: Publisher Site | Google Scholar
- H. L. Weiner, ?A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis,? Journal of neurology, vol. 255, Supplement 1, pp. 3?11, 2008.View at: Publisher Site | Google Scholar
- A. Kutzelnigg and H. Lassmann, ?Pathology of multiple sclerosis and related inflammatory demyelinating diseases,? Handbook of Clinical Neurology, vol. 122, pp. 15?58, 2014.View at: Publisher Site | Google Scholar
- R. Hohlfeld, K. Dornmair, E. Meinl, and H. Wekerle, ?The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets,? The Lancet Neurology, vol. 15, no. 2, pp. 198?209, 2016.View at: Publisher Site | Google Scholar
- B. D. Trapp and K.-A. Nave, ?Multiple sclerosis: an immune or neurodegenerative disorder?? Annual Review of Neuroscience, vol. 31, no. 1, pp. 247?269, 2008.View at: Publisher Site | Google Scholar
- A. P. D. Henderson, M. H. Barnett, J. D. E. Parratt, and J. W. Prineas, ?Multiple sclerosis: distribution of inflammatory cells in newly forming lesions,? Annals of Neurology, vol. 66, no. 6, pp. 739?753, 2009.View at: Publisher Site | Google Scholar
- J. Scholz and C. J. Woolf, ?The neuropathic pain triad: neurons, immune cells and glia,? Nature Neuroscience, vol. 10, no. 11, pp. 1361?1368, 2007.View at: Publisher Site | Google Scholar
- S. S. Duffy, C. J. Perera, P. G. S. Makker, J. G. Lees, P. Carrive, and G. Moalem-Taylor, ?Peripheral and Central Changes and Pain Behaviors in an Animal Model of Multiple Sclerosis,? Frontiers in Immunology, vol. 7, p. 369, 2016.View at: Publisher Site | Google Scholar
- K. C. Thorburn, J. W. Paylor, C. A. Webber, I. R. Winship, and B. J. Kerr, ?Facial hypersensitivity and trigeminal pathology in mice with experimental autoimmune encephalomyelitis,? Pain, vol. 157, no. 3, pp. 627?642, 2016.View at: Publisher Site | Google Scholar
- M. S. Yousuf, M.-C. Noh, T. N. Friedman et al., ?Sensoryneurons of the root hyperexcitable in a T-Cell-Mediated MOG-EAEmodel of Sclerosis,? eNeuro, vol. 6, no. 2, pp. ENEURO.0024?ENEU19.2019, 2019.View at: Publisher Site | Google Scholar
- J. M. E. Jende, G. H. Hauck, R. Diem et al., ?Peripheral nerve involvement in multiple sclerosis: Demonstration by magnetic resonance neurography,? Annals of Neurology, vol. 82, no. 5, pp. 676?685, 2017.View at: Publisher Site | Google Scholar
- C. Baecher-Allan, B. J. Kaskow, and H. L. Weiner, ?Multiple Sclerosis: Mechanisms and Immunotherapy,? Neuron, vol. 97, no. 4, pp. 742?768, 2018.View at: Publisher Site | Google Scholar
- The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2, ?Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis,? Nature, vol. 476, no. 7359, pp. 214?219, 2011.View at: Publisher Site | Google Scholar
- H. Lassmann, W. Brück, and C. F. Lucchinetti, ?The immunopathology of multiple sclerosis: an overview,? Brain pathology, vol. 17, no. 2, pp. 210?218, 2007.View at: Publisher Site | Google Scholar
- J. Machado-Santos, E. Saji, A. R. Tröscher et al., ?The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells,? Brain: A Journal of Neurology, vol. 141, no. 7, pp. 2066?2082, 2018.View at: Publisher Site | Google Scholar
- U. Traugott, E. Reinherz, and C. Raine, ?Multiple sclerosis: distribution of T cell subsets within active chronic lesions,? Science, vol. 219, no. 4582, pp. 308?310, 1983.View at: Publisher Site | Google Scholar
- C. Lock, G. Hermans, R. Pedotti et al., ?Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis,? Nature Medicine, vol. 8, no. 5, pp. 500?508, 2002.View at: Publisher Site | Google Scholar
- N. Muls, Z. Nasr, H. A. Dang, C. Sindic, and V. van Pesch, ?IL-22, GM-CSF and IL-17 in peripheral CD4+ T cell subpopulations during multiple sclerosis relapses and remission. Impact of corticosteroid therapy,? PloS one, vol. 12, no. 3, 2017.View at: Publisher Site | Google Scholar
- K. Wang, F. Song, A. Fernandez-Escobar, G. Luo, J. H. Wang, and Y. Sun, ?The Properties of Cytokines in Multiple Sclerosis: Pros and Cons,? The American Journal of the Medical Sciences, vol. 356, no. 6, pp. 552?560, 2018.View at: Publisher Site | Google Scholar
- H. S. Panitch, R. L. Hirsch, J. Schindler, and K. P. Johnson, ?Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system,? Neurology, vol. 37, no. 7, pp. 1097?1102, 1987.View at: Publisher Site | Google Scholar
- E. Havrdová, A. Belova, A. Goloborodko et al., ?Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study,? Journal of Neurology, vol. 263, no. 7, pp. 1287?1295, 2016.View at: Publisher Site | Google Scholar
- M. Salou, B. Nicol, A. Garcia, and D. A. Laplaud, ?Involvement of CD8(+) T cells in multiple sclerosis,? Frontiers in Immunology, vol. 6, p. 604, 2015.View at: Google Scholar
- I. Medana, M. A. Martinic, H. Wekerle, and H. Neumann, ?Transection of Major Histocompatibility Complex Class I-Induced Neurites by Cytotoxic T Lymphocytes,? The American Journal of Pathology, vol. 159, no. 3, pp. 809?815, 2001.View at: Publisher Site | Google Scholar
- C. Malmeström, J. Lycke, S. Haghighi et al., ?Relapses in multiple sclerosis are associated with increased CD8+ T-cell mediated cytotoxicity in CSF,? Journal of Neuroimmunology, vol. 196, no. 1-2, pp. 159?165, 2008.View at: Publisher Site | Google Scholar
- N. Melzer, S. G. Meuth, and H. Wiendl, ?CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability,? FASEB Journal, vol. 23, no. 11, pp. 3659?3673, 2009.View at: Publisher Site | Google Scholar
- M. Huber, S. Heink, A. Pagenstecher et al., ?IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis,? The Journal of Clinical Investigation, vol. 123, no. 1, pp. 247?260, 2013.View at: Publisher Site | Google Scholar
- K. M. Danikowski, S. Jayaraman, and B. S. Prabhakar, ?Regulatory T cells in multiple sclerosis and myasthenia gravis,? Journal of neuroinflammation, vol. 14, no. 1, p. 117, 2017.View at: Publisher Site | Google Scholar
- M. Kleinewietfeld and D. A. Hafler, ?Regulatory T cells in autoimmune neuroinflammation,? Immunological Reviews, vol. 259, no. 1, pp. 231?244, 2014.View at: Publisher Site | Google Scholar
- L. A. Stephens, K. H. Malpass, and S. M. Anderton, ?Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg,? European Journal of Immunology, vol. 39, no. 4, pp. 1108?1117, 2009.View at: Publisher Site | Google Scholar
- T. Schneider-Hohendorf, M.-P. Stenner, C. Weidenfeller et al., ?Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis,? European Journal of Immunology, vol. 40, no. 12, pp. 3581?3590, 2010.View at: Publisher Site | Google Scholar
- B. Fritzsching, J. Haas, F. König et al., ?Intracerebral human regulatory T cells: analysis of CD4+ CD25+ FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients,? PloS one, vol. 6, no. 3, 2011.View at: Publisher Site | Google Scholar
- B. Fritzsching, M. Korporal, J. Haas, P. H. Krammer, E. Suri-Payer, and B. Wildemann, ?Similar sensitivity of regulatory T cells towards CD95L-mediated apoptosis in patients with multiple sclerosis and healthy individuals,? Journal of the Neurological Sciences, vol. 251, no. 1-2, pp. 91?97, 2006.View at: Publisher Site | Google Scholar
- L. Lovato, S. N. Willis, S. J. Rodig et al., ?Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis,? Brain: A Journal of Neurology, vol. 134, no. 2, pp. 534?541, 2011.View at: Publisher Site | Google Scholar
- M. K. Sharief and E. J. Thompson, ?Intrathecal immunoglobulin M synthesis in multiple sclerosis. Relationship with clinical and cerebrospinal fluid parameters,? Brain: A Journal of Neurology, vol. 114, pp. 181?195, 1991.View at: Google Scholar
- R. P. Lisak, J. A. Benjamins, L. Nedelkoska et al., ?Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro,? Journal of Neuroimmunology, vol. 246, no. 1-2, pp. 85?95, 2012.View at: Publisher Site | Google Scholar
- R. P. Lisak, L. Nedelkoska, J. A. Benjamins et al., ?B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro,? Journal of Neuroimmunology, vol. 309, pp. 88?99, 2017.View at: Publisher Site | Google Scholar
- J. Wang, J. Wang, J. Wang, B. Yang, Q. Weng, and Q. He, ?Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis,? Frontiers in Pharmacology, vol. 10, p. 286, 2019.View at: Publisher Site | Google Scholar
- Y. Dong and V. W. Yong, ?When encephalitogenic T cells collaborate with microglia in multiple sclerosis,? Nature reviews Neurology, vol. 15, no. 12, pp. 704?717, 2019.View at: Publisher Site | Google Scholar
- F. Ginhoux and M. Prinz, ?Origin of Microglia: concepts and Controversies,? Cold Spring Harbor Perspectives in Biology, vol. 7, no. 8, 2015.View at: Publisher Site | Google Scholar
- R. C. Paolicelli, G. Bolasco, F. Pagani et al., ?Synaptic pruning by microglia is necessary for normal brain development,? Science, vol. 333, no. 6048, pp. 1456?1458, 2011.View at: Publisher Site | Google Scholar
- D. P. Schafer, E. K. Lehrman, A. G. Kautzman et al., ?Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement- Dependent Manner,? Neuron, vol. 74, no. 4, pp. 691?705, 2012.View at: Publisher Site | Google Scholar
- U.-K. Hanisch and H. Kettenmann, ?Microglia: active sensor and versatile effector cells in the normal and pathologic brain,? Nature Neuroscience, vol. 10, no. 11, pp. 1387?1394, 2007.View at: Publisher Site | Google Scholar
- H. Mathys, C. Adaikkan, F. Gao et al., ?Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution,? Cell Reports, vol. 21, no. 2, pp. 366?380, 2017.View at: Publisher Site | Google Scholar
- M. M. Hiremath, Y. Saito, G. W. Knapp, J. P. Y. Ting, K. Suzuki, and G. K. Matsushima, ?Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice,? Journal of Neuroimmunology, vol. 92, no. 1-2, pp. 38?49, 1998.View at: Publisher Site | Google Scholar
- D. A. Bakker and S. K. Ludwin, ?Blood-brain barrier permeability during Cuprizone-induced demyelination: Implications for the pathogenesis of immune-mediated demyelinating diseases,? Journal of the Neurological Sciences, vol. 78, no. 2, pp. 125?137, 1987.View at: Publisher Site | Google Scholar
- M. W. Salter and B. Stevens, ?Microglia emerge as central players in brain disease,? Nature Medicine, vol. 23, no. 9, pp. 1018?1027, 2017.View at: Publisher Site | Google Scholar
- S. Hong, L. Dissing-Olesen, and B. Stevens, ?New insights on the role of microglia in synaptic pruning in health and disease,? Current Opinion in Neurobiology, vol. 36, pp. 128?134, 2016.View at: Publisher Site | Google Scholar
- H. Gao, M. C. Danzi, C. S. Choi et al., ?Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis,? Cell Reports, vol. 18, no. 1, pp. 198?212, 2017.View at: Publisher Site | Google Scholar
- F. L. Heppner, R. M. Ransohoff, and B. Becher, ?Immune attack: the role of inflammation in Alzheimer disease,? Nature Reviews. Neuroscience, vol. 16, no. 6, pp. 358?372, 2015.View at: Publisher Site | Google Scholar
- M. Karamita, C. Barnum, W. Möbius et al., ?Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia,? JCI Insight, vol. 2, no. 8, 2017.View at: Publisher Site | Google Scholar
- D. Mrdjen, A. Pavlovic, F. J. Hartmann et al., ?High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease,? Immunity, vol. 48, no. 2, pp. 380?395.e6, 2018.View at: Publisher Site | Google Scholar
- E. J. McMahon, S. L. Bailey, C. V. Castenada, H. Waldner, and S. D. Miller, ?Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis,? Nature Medicine, vol. 11, no. 3, pp. 335?339, 2005.View at: Publisher Site | Google Scholar
- M. Greter, F. L. Heppner, M. P. Lemos et al., ?Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis,? Nature Medicine, vol. 11, no. 3, pp. 328?334, 2005.View at: Publisher Site | Google Scholar
- C.-C. Lin and B. T. Edelson, ?New Insights into the Role of IL-1? in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis,? Journal of Immunology, vol. 198, no. 12, pp. 4553?4560, 2017.View at: Publisher Site | Google Scholar
- B. D. Trapp, J. Peterson, R. M. Ransohoff, R. Rudick, S. Mörk, and L. Bö, ?Axonal transection in the lesions of multiple sclerosis,? The New England Journal of Medicine, vol. 338, no. 5, pp. 278?285, 1998.View at: Publisher Site | Google Scholar
- D. Y. S. Vogel, E. J. F. Vereyken, J. E. Glim et al., ?Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status,? Journal of Neuroinflammation, vol. 10, no. 1, p. 35, 2013.View at: Publisher Site | Google Scholar
- R. A. Sosa, C. Murphey, N. Ji, A. E. Cardona, and T. G. Forsthuber, ?The kinetics of myelin antigen uptake by myeloid cells in the central nervous system during experimental autoimmune encephalomyelitis,? Journal of Immunology, vol. 191, no. 12, pp. 5848?5857, 2013.View at: Publisher Site | Google Scholar
- R. M. Ransohoff and V. H. Perry, ?Microglial physiology: unique stimuli, specialized responses,? Annual Review of Immunology, vol. 27, no. 1, pp. 119?145, 2009.View at: Publisher Site | Google Scholar
- B. Almolda, B. González, and B. Castellano, ?Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE,? Journal of Neuroimmunology, vol. 223, no. 1-2, pp. 39?54, 2010.View at: Publisher Site | Google Scholar
- P. Italiani and D. Boraschi, ?From Monocytes to M1/M2 Macrophages:phenotypical vs. Functional Differentiation,? Frontiers in Immunology, vol. 5, p. 514, 2014.View at: Publisher Site | Google Scholar
- V. E. Miron, A. Boyd, J.-W. Zhao et al., ?M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination,? Nature Neuroscience, vol. 16, no. 9, pp. 1211?1218, 2013.View at: Publisher Site | Google Scholar
- C. Luo, C. Jian, Y. Liao et al., ?The role of microglia in multiple sclerosis,? Neuropsychiatric Disease and Treatment, vol. Volume 13, pp. 1661?1667, 2017.View at: Publisher Site | Google Scholar
- M. R. Kotter, W.-W. Li, C. Zhao, and R. J. Franklin, ?Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation,? The Journal of Neuroscience, vol. 26, no. 1, pp. 328?332, 2006.View at: Publisher Site | Google Scholar
- O. Butovsky, G. Landa, G. Kunis et al., ?Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis,? The Journal of Clinical Investigation, vol. 116, no. 4, pp. 905?915, 2006.View at: Publisher Site | Google Scholar
- H. Keren-Shaul, A. Spinrad, A. Weiner et al., ?A unique microglia type associated with restricting development of Alzheimer?s disease,? Cell, vol. 169, no. 7, pp. 1276?1290.e17, 2017.View at: Publisher Site | Google Scholar
- A. Bhattacharyya, R. Chattopadhyay, S. Mitra, and S. E. Crowe, ?Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases,? Physiological Reviews, vol. 94, no. 2, pp. 329?354, 2014.View at: Publisher Site | Google Scholar
- W. Dröge, ?Free radicals in the physiological control of cell function,? Physiological Reviews, vol. 82, no. 1, pp. 47?95, 2002.View at: Publisher Site | Google Scholar
- F. Ursini, M. Maiorino, and H. J. Forman, ?Redox homeostasis: the golden mean of healthy living,? Redox Biology, vol. 8, pp. 205?215, 2016.View at: Publisher Site | Google Scholar
- H. M. Abu-Soud, J. Wang, D. L. Rousseau, J. M. Fukuto, L. J. Ignarro, and D. J. Stuehr, ?Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis,? The Journal of Biological Chemistry, vol. 270, no. 39, pp. 22997?23006, 1995.View at: Publisher Site | Google Scholar
- S. B. Nimse and D. Pal, ?Free radicals, natural antioxidants, and their reaction mechanisms,? RSC Advances, vol. 5, no. 35, pp. 27986?28006, 2015.View at: Publisher Site | Google Scholar
- X. He, M. G. Chen, and Q. Ma, ?Activation of Nrf2 in defense against cadmium-induced oxidative stress,? Chemical Research in Toxicology, vol. 21, no. 7, pp. 1375?1383, 2008.View at: Publisher Site | Google Scholar
- J. D. Wardyn, A. H. Ponsford, and C. M. Sanderson, ?Dissecting molecular cross-talk between Nrf2 and NF-?B response pathways,? Biochemical Society Transactions, vol. 43, no. 4, pp. 621?626, 2015.View at: Publisher Site | Google Scholar
- C. Mylonas and D. Kouretas, ?Lipid peroxidation and tissue damage,? In vivo, vol. 13, no. 3, pp. 295?309, 1999.View at: Google Scholar
- G. Waris and H. Ahsan, ?Reactive oxygen species: role in the development of cancer and various chronic conditions,? Journal of carcinogenesis, vol. 5, no. 1, p. 14, 2006.View at: Publisher Site | Google Scholar
- M. L. Hegde, A. K. Mantha, T. K. Hazra, K. K. Bhakat, S. Mitra, and B. Szczesny, ?Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases,? Mechanisms of Ageing and Development, vol. 133, no. 4, pp. 157?168, 2012.View at: Publisher Site | Google Scholar
- K. J. Davies, M. E. Delsignore, and S. W. Lin, ?Protein damage and degradation by oxygen radicals. II. Modification of amino acids,? The Journal of Biological Chemistry, vol. 262, no. 20, pp. 9902?9907, 1987.View at: Google Scholar
- J. Hanna, A. Guerra-Moreno, J. Ang, and Y. Micoogullari, ?Protein degradation and the pathologic basis of disease,? The American Journal of Pathology, vol. 189, no. 1, pp. 94?103, 2019.View at: Publisher Site | Google Scholar
- M. L. Circu and T. Y. Aw, ?Reactive oxygen species, cellular redox systems, and apoptosis,? Free Radical Biology & Medicine, vol. 48, no. 6, pp. 749?762, 2010.View at: Publisher Site | Google Scholar
- K. Sinha, J. Das, P. B. Pal, and P. C. Sil, ?Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis,? Archives of Toxicology, vol. 87, no. 7, pp. 1157?1180, 2013.View at: Publisher Site | Google Scholar
- C. P. Baines, R. A. Kaiser, T. Sheiko, W. J. Craigen, and J. D. Molkentin, ?Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death,? Nature Cell Biology, vol. 9, no. 5, pp. 550?555, 2007.View at: Publisher Site | Google Scholar
- A. C. Schinzel, O. Takeuchi, Z. Huang et al., ?Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia,? Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12005?12010, 2005.View at: Publisher Site | Google Scholar
- Y. Cheng, E. Gulbins, and D. Siemen, ?Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel,? Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, vol. 27, no. 3-4, pp. 191?200, 2011.View at: Publisher Site | Google Scholar
- A. J. Kowaltowski, A. E. Vercesi, and R. F. Castilho, ?Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition,? Biochimica et Biophysica Acta, vol. 1318, no. 3, pp. 395?402, 1997.View at: Publisher Site | Google Scholar
- C. Martel, Z. Wang, and C. Brenner, ?VDAC phosphorylation, a lipid sensor influencing the cell fate,? Mitochondrion, vol. 19, pp. 69?77, 2014.View at: Publisher Site | Google Scholar
- M. Le Bras, M. V. Clement, S. Pervaiz, and C. Brenner, ?Reactive oxygen species and the mitochondrial signaling pathway of cell death,? Histology and Histopathology, vol. 20, no. 1, pp. 205?219, 2005.View at: Publisher Site | Google Scholar
- C. P. Baines, R. A. Kaiser, N. H. Purcell et al., ?Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death,? Nature, vol. 434, no. 7033, pp. 658?662, 2005.View at: Publisher Site | Google Scholar
- E. Basso, L. Fante, J. Fowlkes, V. Petronilli, M. A. Forte, and P. Bernardi, ?Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D,? The Journal of Biological Chemistry, vol. 280, no. 19, pp. 18558?18561, 2005.View at: Publisher Site | Google Scholar
- D. R. Green and G. Kroemer, ?The pathophysiology of mitochondrial cell death,? Science, vol. 305, no. 5684, pp. 626?629, 2004.View at: Publisher Site | Google Scholar
- R. Colavitti and T. Finkel, ?Reactive oxygen species as mediators of cellular senescence,? IUBMB Life, vol. 57, no. 4-5, pp. 277?281, 2005.View at: Publisher Site | Google Scholar
- B. Schenk and S. Fulda, ?Reactive oxygen species regulate Smac mimetic/TNF?-induced necroptotic signaling and cell death,? Oncogene, vol. 34, no. 47, pp. 5796?5806, 2015.View at: Publisher Site | Google Scholar
- G. Filomeni, D. de Zio, and F. Cecconi, ?Oxidative stress and autophagy: the clash between damage and metabolic needs,? Cell Death and Differentiation, vol. 22, no. 3, pp. 377?388, 2015.View at: Publisher Site | Google Scholar
- M. Adamczyk-Sowa, S. Galiniak, E. ?yracka et al., ?Oxidative modification of blood serum proteins in multiple sclerosis after interferon beta and melatonin treatment,? Oxidative Medicine and Cellular Longevity, vol. 2017, 8 pages, 2017.View at: Publisher Site | Google Scholar
- M. Sadeghian, V. Mastrolia, A. Rezaei Haddad et al., ?Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis,? Scientific Reports, vol. 6, no. 1, 2016.View at: Publisher Site | Google Scholar
- D. J. Mahad, I. Ziabreva, G. Campbell et al., ?Mitochondrial changes within axons in multiple sclerosis,? Brain: A Journal of Neurology, vol. 132, no. 5, pp. 1161?1174, 2009.View at: Publisher Site | Google Scholar
- L. Haider, M. T. Fischer, J. M. Frischer et al., ?Oxidative damage in multiple sclerosis lesions,? Brain: A Journal of Neurology, vol. 134, no. 7, pp. 1914?1924, 2011.View at: Publisher Site | Google Scholar
- I. Niki?, D. Merkler, C. Sorbara et al., ?A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis,? Nature Medicine, vol. 17, no. 4, pp. 495?499, 2011.View at: Publisher Site | Google Scholar
- A. Bitsch, J. Schuchardt, S. Bunkowski, T. Kuhlmann, and W. Brück, ?Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation,? Brain, vol. 123, no. 6, pp. 1174?1183, 2000.View at: Publisher Site | Google Scholar
- J. van Horssen, G. Schreibelt, J. Drexhage et al., ?Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression,? Free Radical Biology & Medicine, vol. 45, no. 12, pp. 1729?1737, 2008.View at: Publisher Site | Google Scholar
- J. van Horssen, J. A. R. Drexhage, T. Flor, W. Gerritsen, P. van der Valk, and H. E. de Vries, ?Nrf2 and DJ1 are consistently upregulated in inflammatory multiple sclerosis lesions,? Free Radical Biology & Medicine, vol. 49, no. 8, pp. 1283?1289, 2010.View at: Publisher Site | Google Scholar
- A. A. Mossakowski, J. Pohlan, D. Bremer et al., ?Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation,? Acta Neuropathologica, vol. 130, no. 6, pp. 799?814, 2015.View at: Publisher Site | Google Scholar
- L. Haider, ?Inflammation, iron, energy failure, and oxidative stress in the pathogenesis of multiple sclerosis,? Oxidative Medicine and Cellular Longevity, vol. 2015, 10 pages, 2015.View at: Publisher Site | Google Scholar
- M. Gitik, S. Liraz-Zaltsman, P.-A. Oldenborg, F. Reichert, and S. Rotshenker, ?Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRP? (signal regulatory protein-?) on phagocytes,? Journal of Neuroinflammation, vol. 8, no. 1, p. 24, 2011.View at: Publisher Site | Google Scholar
- V. H. Perry, J. A. R. Nicoll, and C. Holmes, ?Microglia in neurodegenerative disease,? Nature Reviews. Neurology, vol. 6, no. 4, pp. 193?201, 2010.View at: Publisher Site | Google Scholar
- B. Halliwell, ?Oxidative stress and neurodegeneration: where are we now?? Journal of Neurochemistry, vol. 97, no. 6, pp. 1634?1658, 2006.View at: Publisher Site | Google Scholar
- S. P. Olesen, ?Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain,? Acta Physiologica Scandinavica, vol. 129, no. 2, pp. 181?187, 1987.View at: Publisher Site | Google Scholar
- G. Giovannoni, N. C. Silver, J. O'Riordan et al., ?Increased urinary nitric oxide metabolites in patients with multiple sclerosis correlates with early and relapsing disease,? Multiple Sclerosis Journal, vol. 5, no. 5, pp. 335?341, 1999.View at: Publisher Site | Google Scholar
- A. Goes, D. Wouters, S. M. A. Pol et al., ?Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro,? FASEB Journal, vol. 15, no. 10, pp. 1852?1854, 2001.View at: Publisher Site | Google Scholar
- A. van der Goes, J. Brouwer, K. Hoekstra, D. Roos, T. K. van den Berg, and C. D. Dijkstra, ?Reactive oxygen species are required for the phagocytosis of myelin by macrophages,? Journal of Neuroimmunology, vol. 92, no. 1-2, pp. 67?75, 1998.View at: Publisher Site | Google Scholar
- D. Odobasic, A. R. Kitching, and S. R. Holdsworth, ?Neutrophil-mediated regulation of innate and adaptive immunity: the role of myeloperoxidase,? Journal of Immunology Research, vol. 2016, Article ID 2349817, 11 pages, 2016.View at: Publisher Site | Google Scholar
- K. Ohl, K. Tenbrock, and M. Kipp, ?Oxidative stress in multiple sclerosis: central and peripheral mode of action,? Experimental Neurology, vol. 277, pp. 58?67, 2016.View at: Publisher Site | Google Scholar
- S. Devadas, L. Zaritskaya, S. G. Rhee, L. Oberley, and M. S. Williams, ?Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression,? The Journal of Experimental Medicine, vol. 195, no. 1, pp. 59?70, 2002.View at: Publisher Site | Google Scholar
- B. Adamczyk and M. Adamczyk-Sowa, ?New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis,? Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 1973834, 18 pages, 2016.View at: Publisher Site | Google Scholar
- K. J. Barnham, C. L. Masters, and A. I. Bush, ?Neurodegenerative diseases and oxidative stress,? Nature Reviews Drug Discovery, vol. 3, no. 3, pp. 205?214, 2004.View at: Publisher Site | Google Scholar
- R. Fischer and O. Maier, ?Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF,? Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 610813, 18 pages, 2015.View at: Publisher Site | Google Scholar
- K. B. Beckman and B. N. Ames, ?The free radical theory of aging matures,? Physiological Reviews, vol. 78, no. 2, pp. 547?581, 1998.View at: Publisher Site | Google Scholar
- E. M. Martínez-Cáceres, M. A. Barrau, L. Brieva, C. Espejo, N. Barberà, and X. Montalban, ?Treatment with methylprednisolone in relapses of multiple sclerosis patients: immunological evidence of immediate and short-term but not long-lasting effects,? Clinical and Experimental Immunology, vol. 127, no. 1, pp. 165?171, 2002.View at: Publisher Site | Google Scholar
- D. H. Miller, A. J. Thompson, S. P. Morrissey et al., ?High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect,? Journal of Neurology, Neurosurgery, and Psychiatry, vol. 55, no. 6, pp. 450?453, 1992.View at: Publisher Site | Google Scholar
- F. Lublin, ?History of modern multiple sclerosis therapy,? Journal of Neurology, vol. 252, no. S3, pp. iii3?iii9, 2005.View at: Publisher Site | Google Scholar
- M. Gholamzad, M. Ebtekar, M. S. Ardestani et al., ?A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future,? Inflammation Research, vol. 68, no. 1, pp. 25?38, 2019.View at: Publisher Site | Google Scholar
- C. Oreja-Guevara, J. Ramos-Cejudo, L. S. Aroeira, B. Chamorro, and E. Diez-Tejedor, ?TH1/TH2 cytokine profile in relapsing-remitting multiple sclerosis patients treated with Glatiramer acetate or Natalizumab,? BMC Neurology, vol. 12, no. 1, 2012.View at: Publisher Site | Google Scholar
- J. Haas, M. Korporal, B. Balint, B. Fritzsching, A. Schwarz, and B. Wildemann, ?Glatiramer acetate improves regulatory T-cell function by expansion of naive CD4+CD25+FOXP3+CD31+ T-cells in patients with multiple sclerosis,? Journal of Neuroimmunology, vol. 216, no. 1-2, pp. 113?117, 2009.View at: Publisher Site | Google Scholar
- E. A. Mills, M. A. Ogrodnik, A. Plave, and Y. Mao-Draayer, ?Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis,? Frontiers in Neurology, vol. 9, 2018.View at: Publisher Site | Google Scholar
- T. Ruck, S. Bittner, H. Wiendl, and S. Meuth, ?Alemtuzumab in multiple sclerosis: mechanism of action and beyond,? International Journal of Molecular Sciences, vol. 16, no. 7, pp. 16414?16439, 2015.View at: Publisher Site | Google Scholar
- K.-M. Myhr, Ø. Torkildsen, A. Lossius, L. Bø, and T. Holmøy, ?B cell depletion in the treatment of multiple sclerosis,? Expert Opinion on Biological Therapy, vol. 19, no. 3, pp. 261?271, 2019.View at: Publisher Site | Google Scholar
- S. Faissner and R. Gold, ?Progressive multiple sclerosis: latest therapeutic developments and future directions,? Therapeutic Advances in Neurological Disorders, vol. 12, 2019.View at: Publisher Site | Google Scholar
- R. Fischer, R. Kontermann, and O. Maier, ?Targeting sTNF/TNFR1 signaling as a new therapeutic strategy,? Antibodies, vol. 4, no. 1, pp. 48?70, 2015.View at: Publisher Site | Google Scholar
- C. Monaco, J. Nanchahal, P. Taylor, and M. Feldmann, ?Anti-TNF therapy: past, present and future,? International Immunology, vol. 27, no. 1, pp. 55?62, 2014.View at: Publisher Site | Google Scholar
- B. W. van Oosten, F. Barkhof, L. Truyen et al., ?Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2,? Neurology, vol. 47, no. 6, pp. 1531?1534, 1996.View at: Publisher Site | Google Scholar
- B. G. W. Arnason, G. Jacobs, M. Hanlon et al., ?TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The Lenercept Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group,? Neurology, vol. 53, no. 3, pp. 457?465, 1999.View at: Google Scholar
- H.-P. Hartung and B. C. Kieseier, ?Atacicept: targeting B cells in multiple sclerosis,? Therapeutic Advances in Neurological Disorders, vol. 3, no. 4, pp. 205?216, 2010.View at: Publisher Site | Google Scholar
- L. Kappos, H. P. Hartung, M. S. Freedman et al., ?Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial,? The Lancet Neurology, vol. 13, no. 4, pp. 353?363, 2014.View at: Publisher Site | Google Scholar
- F. Kees, ?Dimethyl fumarate: a Janus-faced substance?? Expert Opinion on Pharmacotherapy, vol. 14, no. 11, pp. 1559?1567, 2013.View at: Publisher Site | Google Scholar
- H. Huang, A. Taraboletti, and L. P. Shriver, ?Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes,? Redox Biology, vol. 5, pp. 169?175, 2015.View at: Publisher Site | Google Scholar
- E. D. Miller, A. Dziedzic, J. Saluk-Bijak, and M. Bijak, ?A review of various antioxidant compounds and their potential utility as complementary therapy in multiple sclerosis,? Nutrients, vol. 11, no. 7, p. 1528, 2019.View at: Publisher Site | Google Scholar
- E. Miller, A. Walczak, I. Majsterek, and J. K?dziora, ?Melatonin reduces oxidative stress in the erythrocytes of multiple sclerosis patients with secondary progressive clinical course,? Journal of Neuroimmunology, vol. 257, no. 1-2, pp. 97?101, 2013.View at: Publisher Site | Google Scholar
- S. Emamgholipour, A. Hossein-nezhad, M. A. Sahraian, F. Askarisadr, and M. Ansari, ?Evidence for possible role of melatonin in reducing oxidative stress in multiple sclerosis through its effect on SIRT1 and antioxidant enzymes,? Life Sciences, vol. 145, pp. 34?41, 2016.View at: Publisher Site | Google Scholar
- M. F. Farez, I. D. Mascanfroni, S. P. Méndez-Huergo et al., ?Melatonin contributes to the seasonality of multiple sclerosis relapses,? Cell, vol. 162, no. 6, pp. 1338?1352, 2015.View at: Publisher Site | Google Scholar
- M. Sanoobar, S. Eghtesadi, A. Azimi, M. Khalili, S. Jazayeri, and M. Reza Gohari, ?Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing-remitting multiple sclerosis,? The International Journal of Neuroscience, vol. 123, no. 11, pp. 776?782, 2013.View at: Publisher Site | Google Scholar
- S. M. Fiebiger, H. Bros, T. Grobosch et al., ?The antioxidant idebenone fails to prevent or attenuate chronic experimental autoimmune encephalomyelitis in the mouse,? Journal of Neuroimmunology, vol. 262, no. 1-2, pp. 66?71, 2013.View at: Publisher Site | Google Scholar
- L. Probert, ?TNF and its receptors in the CNS: the essential, the desirable and the deleterious effects,? Neuroscience, vol. 302, pp. 2?22, 2015.View at: Publisher Site | Google Scholar
- H. G. Novrup, V. Bracchi-Ricard, D. G. Ellman et al., ?Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice,? Journal of Neuroinflammation, vol. 11, no. 1, p. 159, 2014.View at: Publisher Site | Google Scholar
- C. J. Barnum, X. Chen, J. Chung et al., ?Peripheral administration of the selective inhibitor of soluble tumor necrosis factor (TNF) XPro®1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats,? Journal of Parkinson's Disease, vol. 4, no. 3, pp. 349?360, 2014.View at: Publisher Site | Google Scholar
- T. del Rivero, R. Fischer, F. Yang, K. A. Swanson, and J. R. Bethea, ?Tumor necrosis factor receptor 1 inhibition is therapeutic for neuropathic pain in males but not in females,? Pain, vol. 160, no. 4, pp. 922?931, 2019.View at: Publisher Site | Google Scholar
- S. K. Williams, R. Fairless, O. Maier et al. et al., ?Anti-TNFR1 targeting in humanized mice ameliorates disease in a model of multiple sclerosis,? Scientific Reports, vol. 8, no. 1, p. 13628, 2018.View at: Publisher Site | Google Scholar
- R. Brambilla, J. J. Ashbaugh, R. Magliozzi et al., ?Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination,? Brain: A Journal of Neurology, vol. 134, no. 9, pp. 2736?2754, 2011.View at: Publisher Site | Google Scholar
- E. Taoufik, V. Tseveleki, S. Y. Chu et al., ?Transmembrane tumour necrosis factor is neuroprotective and regulates experimental autoimmune encephalomyelitis via neuronal nuclear factor-?B,? Brain: A Journal of Neurology, vol. 134, no. 9, pp. 2722?2735, 2011.View at: Publisher Site | Google Scholar
- H. A. Arnett, J. Mason, M. Marino, K. Suzuki, G. K. Matsushima, and J. P. Y. Ting, ?TNF? promotes proliferation of oligodendrocyte progenitors and remyelination,? Nature Neuroscience, vol. 4, no. 11, pp. 1116?1122, 2001.View at: Publisher Site | Google Scholar
- P. M. Madsen, D. Motti, S. Karmally et al., ?Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination,? The Journal of Neuroscience, vol. 36, no. 18, pp. 5128?5143, 2016.View at: Publisher Site | Google Scholar
- R. Fischer, H. Wajant, R. Kontermann, K. Pfizenmaier, and O. Maier, ?Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor,? Glia, vol. 62, no. 2, pp. 272?283, 2014.View at: Publisher Site | Google Scholar
- R. Fischer, O. Maier, M. Siegemund, H. Wajant, P. Scheurich, and K. Pfizenmaier, ?A TNF receptor 2 selective agonist rescues human neurons from oxidative stress-induced cell death,? PloS one, vol. 6, no. 11, p. e27621, 2011.View at: Publisher Site | Google Scholar
- L. Marchetti, M. Klein, K. Schlett, K. Pfizenmaier, and U. L. M. Eisel, ?Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway,? The Journal of Biological Chemistry, vol. 279, no. 31, pp. 32869?32881, 2004.View at: Publisher Site | Google Scholar
- Y. Dong, R. Fischer, P. J. W. Naudé et al., ?Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration,? Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 43, pp. 12304?12309, 2016.View at: Publisher Site | Google Scholar
- O. Maier, R. Fischer, C. Agresti, and K. Pfizenmaier, ?TNF receptor 2 protects oligodendrocyte progenitor cells against oxidative stress,? Biochemical and Biophysical Research Communications, vol. 440, no. 2, pp. 336?341, 2013.View at: Publisher Site | Google Scholar
- R. Fischer, J. Marsal, C. Guttà et al., ?Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2,? Scientific Reports, vol. 7, no. 1, 2017.View at: Publisher Site | Google Scholar
- R. Fischer, M. Proske, M. Duffey et al., ?Selective activation of tumor necrosis factor receptor II induces antiinflammatory responses and alleviates experimental arthritis,? Arthritis & rheumatology, vol. 70, no. 5, pp. 722?735, 2018.View at: Publisher Site | Google Scholar
- R. Fischer, T. Padutsch, V. Bracchi-Ricard et al., ?Exogenous activation of tumor necrosis factor receptor 2 promotes recovery from sensory and motor disease in a model of multiple sclerosis,? Brain, behavior, and immunity, vol. 81, pp. 247?259, 2019.View at: Publisher Site | Google Scholar
- R. Fischer, M. Sendetski, T. del Rivero et al., ?TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes,? Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 34, pp. 17045?17050, 2019.View at: Publisher Site | Google Scholar
- V. Pegoretti, W. Baron, J. D. Laman, and U. L. M. Eisel, ?Selective modulation of TNF-TNFRs signaling: insights for multiple sclerosis treatment,? Frontiers in Immunology, vol. 9, p. 925, 2018.View at: Publisher Site | Google Scholar
- K. Frei, S. Fredrikson, A. Fontana, and H. Link, ?Interleukin-6 is elevated in plasma in multiple sclerosis,? Journal of Neuroimmunology, vol. 31, no. 2, pp. 147?153, 1991.View at: Publisher Site | Google Scholar
- D. Maimone, G. C. Guazzi, and P. Annunziata, ?IL-6 detection in multiple sclerosis brain,? Journal of the Neurological Sciences, vol. 146, no. 1, pp. 59?65, 1997.View at: Publisher Site | Google Scholar
- E. B. Samoilova, J. L. Horton, B. Hilliard, T.-S. T. Liu, and Y. Chen, ?IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells,? Journal of Immunology, vol. 161, no. 12, pp. 6480?6486, 1998.View at: Google Scholar
- M. Rothaug, C. Becker-Pauly, and S. Rose-John, ?The role of interleukin-6 signaling in nervous tissue,? Biochimica et biophysica acta, vol. 1863, no. 6, pp. 1218?1227, 2016.View at: Publisher Site | Google Scholar
- K. Serizawa, H. Tomizawa-Shinohara, M. Magi, K. Yogo, and Y. Matsumoto, ?Anti-IL-6 receptor antibody improves pain symptoms in mice with experimental autoimmune encephalomyelitis,? Journal of Neuroimmunology, vol. 319, pp. 71?79, 2018.View at: Publisher Site | Google Scholar
- M. Araki, M. Nakamura, W. Sato, Y. Takahashi, and T. Yamamura, ?Potential benefits of the anti-IL-6 receptor antibody tocilizumab in multiple sclerosis patients with high plasmablast frequency,? Journal of the Neurological Sciences, vol. 381, p. 131, 2017.View at: Publisher Site | Google Scholar
- P. Beauchemin and R. Carruthers, ?Response to: tocilizumab, neuromyelitis optica (NMO), and multiple sclerosis,? Multiple Sclerosis, vol. 22, no. 14, pp. 1892-1893, 2016.View at: Publisher Site | Google Scholar
- M. J. McGeachy, K. S. Bak-Jensen, Y. Chen et al., ?TGF-? and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology,? Nature Immunology, vol. 8, no. 12, pp. 1390?1397, 2007.View at: Publisher Site | Google Scholar
- E. Bettelli, Y. Carrier, W. Gao et al., ?Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,? Nature, vol. 441, no. 7090, pp. 235?238, 2006.View at: Publisher Site | Google Scholar
- J. Thöne and R. Linker, ?Laquinimod in the treatment of multiple sclerosis: a review of the data so far,? Drug Design, Development and Therapy, vol. 10, pp. 1111?1118, 2016.View at: Publisher Site | Google Scholar
- M. Rosenzwajg, R. Lorenzon, P. Cacoub et al., ?Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial,? Annals of the Rheumatic Diseases, vol. 78, no. 2, pp. 209?217, 2019.View at: Publisher Site | Google Scholar
- F. L. Heppner, M. Greter, D. Marino et al., ?Experimental autoimmune encephalomyelitis repressed by microglial paralysis,? Nature Medicine, vol. 11, no. 2, pp. 146?152, 2005.View at: Publisher Site | Google Scholar
- M. Prinz and J. Priller, ?Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease,? Nature Reviews Neuroscience, vol. 15, no. 5, pp. 300?312, 2014.View at: Publisher Site | Google Scholar
- M. Olah, S. Amor, N. Brouwer et al., ?Identification of a microglia phenotype supportive of remyelination,? Glia, vol. 60, no. 2, pp. 306?321, 2012.View at: Publisher Site | Google Scholar
- A. Lampron, A. Larochelle, N. Laflamme et al., ?Inefficient clearance of myelin debris by microglia impairs remyelinating processes,? The Journal of Experimental Medicine, vol. 212, no. 4, pp. 481?495, 2015.View at: Publisher Site | Google Scholar
- T. Prod?homme and S. S. Zamvil, ?The evolving mechanisms of action of glatiramer acetate,? Cold Spring Harbor perspectives in medicine, vol. 9, no. 2, 2019.View at: Publisher Site | Google Scholar
- P. M. Steed, M. G. Tansey, J. Zalevsky et al., ?Inactivation of TNF signaling by rationally designed dominant-negative TNF variants,? Science, vol. 301, no. 5641, pp. 1895?1898, 2003.View at: Publisher Site | Google Scholar
- T. Veremeyko, A. W. Y. Yung, M. Dukhinova et al., ?Cyclic AMP pathway suppress autoimmune neuroinflammation by inhibiting functions of encephalitogenic CD4 T cells and enhancing M2 macrophage polarization at the site of inflammation,? Frontiers in Immunology, vol. 9, 2018.View at: Publisher Site | Google Scholar
- Q. Weng, J. Wang, J. Wang et al., ?Lenalidomide regulates CNS autoimmunity by promoting M2 macrophages polarization,? Cell death & Disease, vol. 9, no. 2, p. 251, 2018.View at: Publisher Site | Google Scholar
- J. Dörr and F. Paul, ?The transition from first-line to second-line therapy in multiple sclerosis,? Current Treatment Options in Neurology, vol. 17, no. 6, p. 354, 2015.View at: Publisher Site | Google Scholar
- A. Gajofatto and M. D. Benedetti, ?Treatment strategies for multiple sclerosis: when to start, when to change, when to stop?? World Journal of Clinical Cases, vol. 3, no. 7, pp. 545?555, 2015.View at: Publisher Site | Google Scholar
- S. Hewlings and D. Kalman, ?Curcumin: a review of its? effects on human health,? Foods, vol. 6, no. 10, p. 92, 2017.View at: Publisher Site | Google Scholar
- C. Natarajan and J. J. Bright, ?Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes,? Journal of Immunology, vol. 168, no. 12, pp. 6506?6513, 2002.View at: Publisher Site | Google Scholar
- V. P. Palace, N. Khaper, Q. Qin, and P. K. Singal, ?Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease,? Free Radical Biology & Medicine, vol. 26, no. 5-6, pp. 746?761, 1999.View at: Publisher Site | Google Scholar
- H. T. Besler, S. Ç. Çomo?lu, and Z. ?. OkÇu, ?Serum levels of antioxidant vitamins and lipid peroxidation in multiple sclerosis,? Nutritional Neuroscience, vol. 5, no. 3, pp. 215?220, 2013.View at: Publisher Site | Google Scholar
- A. A. Saboor-Yaraghi, M. H. Harirchian, N. Mohammadzadeh Honarvar et al., ?The effect of vitamin A supplementation on FoxP3 and TGF-? gene expression in Avonex-treated multiple sclerosis patients,? Journal of molecular neuroscience: MN, vol. 56, no. 3, pp. 608?612, 2015.View at: Publisher Site | Google Scholar
- M. Raverdeau, C. J. Breen, A. Misiak, and K. H. G. Mills, ?Retinoic acid suppresses IL-17 production and pathogenic activity of ?? T cells in CNS autoimmunity,? Immunology and Cell Biology, vol. 94, no. 8, pp. 763?773, 2016.View at: Publisher Site | Google Scholar
- A. Carr and B. Frei, ?Does vitamin C act as a pro-oxidant under physiological conditions?? FASEB Journal, vol. 13, no. 9, pp. 1007?1024, 1999.View at: Publisher Site | Google Scholar
- Y.-e. Guo, N. Suo, X. Cui, Q. Yuan, and X. Xie, ?Vitamin C promotes oligodendrocytes generation and remyelination,? Glia, vol. 66, no. 7, pp. 1302?1316, 2018.View at: Publisher Site | Google Scholar
- H. Wiseman, ?Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action,? FEBS Letters, vol. 326, no. 1-3, pp. 285?288, 1993.View at: Publisher Site | Google Scholar
- T. F. Runia, W. C. J. Hop, Y. B. de Rijke, D. Buljevac, and R. Q. Hintzen, ?Lower serum vitamin D levels are associated with a higher relapse risk in multiple sclerosis,? Neurology, vol. 79, no. 3, pp. 261?266, 2012.View at: Publisher Site | Google Scholar
- D. Häusler and M. S. Weber, ?Vitamin D supplementation in central nervous system demyelinating disease-enough is enough,? International Journal of Molecular Sciences, vol. 20, no. 1, p. 218, 2019.View at: Publisher Site | Google Scholar
- M. G. Traber and J. Atkinson, ?Vitamin E, antioxidant and nothing more,? Free Radical Biology & Medicine, vol. 43, no. 1, pp. 4?15, 2007.View at: Publisher Site | Google Scholar
- K. I. Løken-Amsrud, K. M. Myhr, S. J. Bakke et al., ?Alpha-tocopherol and MRI outcomes in multiple sclerosis--association and prediction,? PloS one, vol. 8, no. 1, p. e54417, 2013.View at: Publisher Site | Google Scholar
- H. Xue, H. Ren, L. Zhang et al., ?Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells,? Iranian Journal of Basic Medical Sciences, vol. 19, no. 5, pp. 561?566, 2016.View at: Google Scholar